Alba Domi, Thomas Eberl, Dominik Hellmann, Sara Krieg and Heinrich Päs
{"title":"中微子望远镜在暗费米子存在时探测量子引力诱导退相干的潜力","authors":"Alba Domi, Thomas Eberl, Dominik Hellmann, Sara Krieg and Heinrich Päs","doi":"10.1088/1475-7516/2025/01/063","DOIUrl":null,"url":null,"abstract":"We assess the potential of neutrino telescopes to discover quantum-gravity-induced decoherence effects modeled in the open-quantum system framework and with arbitrary numbers of active and dark fermion generations, such as particle dark matter or sterile neutrinos. The expected damping of neutrino flavor oscillation probabilities as a function of energy and propagation length thus encodes information about quantum gravity effects and the fermion generation multiplicity in the dark sector. We employ a public Monte-Carlo dataset provided by the IceCube Collaboration to model the detector response and estimate the sensitivity of IceCube to oscillation effects in atmospheric neutrinos induced by the presented model. Our findings confirm the potential of very-large-volume neutrino telescopes to test this class of models and indicate higher sensitivities for increasing numbers of dark fermions.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"41 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of neutrino telescopes to detect quantum gravity-induced decoherence in the presence of dark fermions\",\"authors\":\"Alba Domi, Thomas Eberl, Dominik Hellmann, Sara Krieg and Heinrich Päs\",\"doi\":\"10.1088/1475-7516/2025/01/063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We assess the potential of neutrino telescopes to discover quantum-gravity-induced decoherence effects modeled in the open-quantum system framework and with arbitrary numbers of active and dark fermion generations, such as particle dark matter or sterile neutrinos. The expected damping of neutrino flavor oscillation probabilities as a function of energy and propagation length thus encodes information about quantum gravity effects and the fermion generation multiplicity in the dark sector. We employ a public Monte-Carlo dataset provided by the IceCube Collaboration to model the detector response and estimate the sensitivity of IceCube to oscillation effects in atmospheric neutrinos induced by the presented model. Our findings confirm the potential of very-large-volume neutrino telescopes to test this class of models and indicate higher sensitivities for increasing numbers of dark fermions.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/01/063\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/063","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Potential of neutrino telescopes to detect quantum gravity-induced decoherence in the presence of dark fermions
We assess the potential of neutrino telescopes to discover quantum-gravity-induced decoherence effects modeled in the open-quantum system framework and with arbitrary numbers of active and dark fermion generations, such as particle dark matter or sterile neutrinos. The expected damping of neutrino flavor oscillation probabilities as a function of energy and propagation length thus encodes information about quantum gravity effects and the fermion generation multiplicity in the dark sector. We employ a public Monte-Carlo dataset provided by the IceCube Collaboration to model the detector response and estimate the sensitivity of IceCube to oscillation effects in atmospheric neutrinos induced by the presented model. Our findings confirm the potential of very-large-volume neutrino telescopes to test this class of models and indicate higher sensitivities for increasing numbers of dark fermions.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.