Heterosigma akashiwo 对微塑料环境行为的影响:聚集、沉降和再悬浮动力学

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2025-01-15 DOI:10.1016/j.jhazmat.2025.137242
Young Kyun Lim, Chung Hyeon Lee, Kyun-Woo Lee, Sang Hee Hong, Seung Ho Baek
{"title":"Heterosigma akashiwo 对微塑料环境行为的影响:聚集、沉降和再悬浮动力学","authors":"Young Kyun Lim, Chung Hyeon Lee, Kyun-Woo Lee, Sang Hee Hong, Seung Ho Baek","doi":"10.1016/j.jhazmat.2025.137242","DOIUrl":null,"url":null,"abstract":"Aggregation processes of microalgae have significant effects on the vertical distribution of microplastics (MPs) in the marine environment. This study explored how the harmful microalga <em>Heterosigma akashiwo</em> affects the aggregation and sinking characteristics of four types of MPs: low and high-density polyethylene (PE) spheres, and small and large polypropylene (PP) fragments. The aggregation of MPs was primarily driven by extracellular polymeric substances (EPS) rather than direct attachment to the cells, contributing to their sinking. The sinking of low-density PE spheres followed a logistic function, saturating at 28% with a half-saturation time of 9 days. In contrast, small PP fragments sank minimally (under 2%) and large PP fragments showed almost no sinking, indicating the varying impacts of MP density and size. The sinking velocity of the MP aggregates was significantly lower for low-density PE spheres (0.63<!-- --> <!-- -->mm∙s<sup>-1</sup>) than for high-density PE spheres (0.81<!-- --> <!-- -->mm∙s<sup>-1</sup>), despite no significant differences in aggregate size or MP particle number. This result may suggest that low-density MPs could potentially affect marine carbon cycle. Furthermore, no clear evidence was found for the resuspension of the settled aggregates due to bacterial decomposition under dark and cold conditions. As the first experimental study to explore the aggregation, sinking, and resuspension of different MPs in the presence of <em>H. akashiwo</em>, these findings, when integrated with field observations and modeling studies, provide valuable insights for predicting MP distribution in marine environments.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"7 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Heterosigma akashiwo on the Environmental Behavior of Microplastics: Aggregation, Sinking, and Resuspension Dynamics\",\"authors\":\"Young Kyun Lim, Chung Hyeon Lee, Kyun-Woo Lee, Sang Hee Hong, Seung Ho Baek\",\"doi\":\"10.1016/j.jhazmat.2025.137242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aggregation processes of microalgae have significant effects on the vertical distribution of microplastics (MPs) in the marine environment. This study explored how the harmful microalga <em>Heterosigma akashiwo</em> affects the aggregation and sinking characteristics of four types of MPs: low and high-density polyethylene (PE) spheres, and small and large polypropylene (PP) fragments. The aggregation of MPs was primarily driven by extracellular polymeric substances (EPS) rather than direct attachment to the cells, contributing to their sinking. The sinking of low-density PE spheres followed a logistic function, saturating at 28% with a half-saturation time of 9 days. In contrast, small PP fragments sank minimally (under 2%) and large PP fragments showed almost no sinking, indicating the varying impacts of MP density and size. The sinking velocity of the MP aggregates was significantly lower for low-density PE spheres (0.63<!-- --> <!-- -->mm∙s<sup>-1</sup>) than for high-density PE spheres (0.81<!-- --> <!-- -->mm∙s<sup>-1</sup>), despite no significant differences in aggregate size or MP particle number. This result may suggest that low-density MPs could potentially affect marine carbon cycle. Furthermore, no clear evidence was found for the resuspension of the settled aggregates due to bacterial decomposition under dark and cold conditions. As the first experimental study to explore the aggregation, sinking, and resuspension of different MPs in the presence of <em>H. akashiwo</em>, these findings, when integrated with field observations and modeling studies, provide valuable insights for predicting MP distribution in marine environments.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.137242\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137242","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Heterosigma akashiwo on the Environmental Behavior of Microplastics: Aggregation, Sinking, and Resuspension Dynamics
Aggregation processes of microalgae have significant effects on the vertical distribution of microplastics (MPs) in the marine environment. This study explored how the harmful microalga Heterosigma akashiwo affects the aggregation and sinking characteristics of four types of MPs: low and high-density polyethylene (PE) spheres, and small and large polypropylene (PP) fragments. The aggregation of MPs was primarily driven by extracellular polymeric substances (EPS) rather than direct attachment to the cells, contributing to their sinking. The sinking of low-density PE spheres followed a logistic function, saturating at 28% with a half-saturation time of 9 days. In contrast, small PP fragments sank minimally (under 2%) and large PP fragments showed almost no sinking, indicating the varying impacts of MP density and size. The sinking velocity of the MP aggregates was significantly lower for low-density PE spheres (0.63 mm∙s-1) than for high-density PE spheres (0.81 mm∙s-1), despite no significant differences in aggregate size or MP particle number. This result may suggest that low-density MPs could potentially affect marine carbon cycle. Furthermore, no clear evidence was found for the resuspension of the settled aggregates due to bacterial decomposition under dark and cold conditions. As the first experimental study to explore the aggregation, sinking, and resuspension of different MPs in the presence of H. akashiwo, these findings, when integrated with field observations and modeling studies, provide valuable insights for predicting MP distribution in marine environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Active surface area determines the activity of biochar in Fenton-like oxidation processes Effect and mechanism of the moisture content on the kinetic retardation of LNAPL pollutant migration by the capillary zone Interfacial hydrophilicity induced CoAl-LDH/Ti3C2Tx@PVDF Fenton-like catalytic filtration membrane for efficient anti-fouling and water decontamination Assessing microplastic and nanoplastic contamination in bird lungs: evidence of ecological risks and bioindicator potential DNA Methylation Regulates Somatic Stress Memory and Mediates Plasticity during Acclimation to Repeated Sulfide Stress in Urechis unicinctus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1