活化不稳定介孔Zr(IV)-MOF高效自校准酸度传感的稳定性和实用性能研究

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-15 DOI:10.1002/anie.202422517
Feifan Lang, Lulu Zhang, Yang Li, Xiao-Juan Xi, Jiandong Pang, Wenjun Zheng, Hong-Cai Zhou, Xian-He Bu
{"title":"活化不稳定介孔Zr(IV)-MOF高效自校准酸度传感的稳定性和实用性能研究","authors":"Feifan Lang, Lulu Zhang, Yang Li, Xiao-Juan Xi, Jiandong Pang, Wenjun Zheng, Hong-Cai Zhou, Xian-He Bu","doi":"10.1002/anie.202422517","DOIUrl":null,"url":null,"abstract":"The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB). We applied two strategies: mixed-linker synthesis and linker installation. In the mixed-linker approach, we incorporated an auxiliary linker, TPTB, which resembles PPTB, during synthesis to improve the framework's stability. In the linker installation approach, we introduced a ditopic carboxylate linker (BPDC) into the coordination-unsaturated sites of NKM-809. These strategies produced stabilized derivatives, named NKM-808.X (X = χPPTB) and NKM-809-BPDC, which exhibit pH-responsive dual-wavelength fluorescence at distinct emission wavelengths. Remarkably, these emissions shift oppositely upon protonation and dissociation, distinguishing them as highly sensitive, self-calibrating acidity sensors. In NKM-809-BPDC, an additional quenching of the linker-emission (419 nm) minimizes inherent interference, enabling integrated quality and lifespan self-monitoring. Theoretical calculations identified transitions between (n, π*) and (π, π*) emission states during the sensing process and highlighted the role of a stable mesoporous network in achieving stronger protonation response. These findings showcase the potential of stabilized mesoporous MOFs for practical applications, alongside valuable insights into strategies for optimizing such materials.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"74 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrieving the Stability and Practical Performance of Activation-Unstable Mesoporous Zr(IV)-MOF for Highly Efficient Self-Calibrating Acidity Sensing\",\"authors\":\"Feifan Lang, Lulu Zhang, Yang Li, Xiao-Juan Xi, Jiandong Pang, Wenjun Zheng, Hong-Cai Zhou, Xian-He Bu\",\"doi\":\"10.1002/anie.202422517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB). We applied two strategies: mixed-linker synthesis and linker installation. In the mixed-linker approach, we incorporated an auxiliary linker, TPTB, which resembles PPTB, during synthesis to improve the framework's stability. In the linker installation approach, we introduced a ditopic carboxylate linker (BPDC) into the coordination-unsaturated sites of NKM-809. These strategies produced stabilized derivatives, named NKM-808.X (X = χPPTB) and NKM-809-BPDC, which exhibit pH-responsive dual-wavelength fluorescence at distinct emission wavelengths. Remarkably, these emissions shift oppositely upon protonation and dissociation, distinguishing them as highly sensitive, self-calibrating acidity sensors. In NKM-809-BPDC, an additional quenching of the linker-emission (419 nm) minimizes inherent interference, enabling integrated quality and lifespan self-monitoring. Theoretical calculations identified transitions between (n, π*) and (π, π*) emission states during the sensing process and highlighted the role of a stable mesoporous network in achieving stronger protonation response. These findings showcase the potential of stabilized mesoporous MOFs for practical applications, alongside valuable insights into strategies for optimizing such materials.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202422517\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422517","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

活化不稳定介孔金属有机骨架(MOFs)的实际应用往往受到其结构不稳定性的制约。然而,增强它们的稳定性可以解锁有价值的功能。在此,我们稳定了一种新型介孔Zr(IV)-MOF, NKM-809的后活化结构,该结构使用含吡啶的双质子连接剂(PPTB)。我们采用了两种策略:混合连杆合成和连杆安装。在混合连接子方法中,我们在合成过程中加入了一个辅助连接子TPTB,它类似于PPTB,以提高框架的稳定性。在连接剂的安装方法中,我们在NKM-809的配位不饱和位点上引入了双羧酸盐连接剂(BPDC)。这些策略产生了稳定的衍生品,名为NKM-808。X (X = χPPTB)和NKM-809-BPDC,在不同的发射波长表现出ph响应的双波长荧光。值得注意的是,这些排放物在质子化和离解时相反地移动,使它们成为高度敏感的、自校准的酸度传感器。在NKM-809-BPDC中,额外淬火了连接发射(419 nm),最大限度地减少了固有干扰,实现了集成质量和寿命的自我监测。理论计算确定了传感过程中(n, π*)和(π, π*)发射态之间的跃迁,并强调了稳定的介孔网络在实现更强质子化响应中的作用。这些发现展示了稳定介孔mof在实际应用中的潜力,同时也为优化此类材料的策略提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retrieving the Stability and Practical Performance of Activation-Unstable Mesoporous Zr(IV)-MOF for Highly Efficient Self-Calibrating Acidity Sensing
The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB). We applied two strategies: mixed-linker synthesis and linker installation. In the mixed-linker approach, we incorporated an auxiliary linker, TPTB, which resembles PPTB, during synthesis to improve the framework's stability. In the linker installation approach, we introduced a ditopic carboxylate linker (BPDC) into the coordination-unsaturated sites of NKM-809. These strategies produced stabilized derivatives, named NKM-808.X (X = χPPTB) and NKM-809-BPDC, which exhibit pH-responsive dual-wavelength fluorescence at distinct emission wavelengths. Remarkably, these emissions shift oppositely upon protonation and dissociation, distinguishing them as highly sensitive, self-calibrating acidity sensors. In NKM-809-BPDC, an additional quenching of the linker-emission (419 nm) minimizes inherent interference, enabling integrated quality and lifespan self-monitoring. Theoretical calculations identified transitions between (n, π*) and (π, π*) emission states during the sensing process and highlighted the role of a stable mesoporous network in achieving stronger protonation response. These findings showcase the potential of stabilized mesoporous MOFs for practical applications, alongside valuable insights into strategies for optimizing such materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Single-Crystal-to-Single-Crystal Synthesis of a Polymer in Two Distinct Topologies Topological Supramolecular Complexation of Metal-Organic Polyhedra for Tunable Interconnected Hierarchical Microporosity in Amorphous Form Sabatier Principle Inspired Bifunctional Alloy Interface for Stable and High-Depth Discharging Zinc Metal Anodes Towards Solid-State Batteries Using a Calcium Hydridoborate Electrolyte Exceptional Battery-level Safety of High Energy Density Lithium-Ion Batteries through Non-Flammable and Low-Exothermic Localize High Concentration Electrolytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1