PEDOT:PSS上p型聚合物薄层提高常规有机太阳能电池的效率和光稳定性。

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-04-01 Epub Date: 2025-01-15 DOI:10.1002/marc.202401032
Xinkang Wang, Mingqing Chen, Peng Dou, Lianjie Zhang, Qingqing Bai, Xianglun Xie, Dongge Ma, Junwu Chen
{"title":"PEDOT:PSS上p型聚合物薄层提高常规有机太阳能电池的效率和光稳定性。","authors":"Xinkang Wang, Mingqing Chen, Peng Dou, Lianjie Zhang, Qingqing Bai, Xianglun Xie, Dongge Ma, Junwu Chen","doi":"10.1002/marc.202401032","DOIUrl":null,"url":null,"abstract":"<p><p>Simultaneous improvement in power conversion efficiency (PCE) and device stability is very important for organic solar cells (OSCs). Herein, oligothiophene-based polymer W19 with excellent solvent resistance is exploited as a polymer thin layer to optimize the active layer morphology and then device efficiency and stability. Polymer W19 possesses a simple skeleton of trifluromethyl-substituted dithienoquinoxaline and quaterthiophene, whose thin layer shows suitable energy level, low surface energy, and strong interchain aggregation, leading to outstanding solvent resistance and excellent hole transport ability. Optimized vertical separation alleviates trap state density and energy loss, improves hole transfer dynamics, and balances the charge transport, thus maximizing open-circuit voltage, short-circuit current density, and fill factor simultaneously. A high PCE of 19.70% is achieved for the W19 treated devices. Noticeably, OSCs treated with W19 retained 87% of its initial PCE after continuous illumination for 800 h, which is higher than that of 74% of the control. Large area devices of 1 and 4 cm<sup>2</sup> can achieve high efficiencies of 17.36% and 14.46%, respectively. This work highlights that the polymer thin layer W19 with the ability of strong solvent resistance has the great potential to further improve the efficiency and photostability of OSCs.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401032"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Efficiency and Light Stability of Conventional Organic Solar Cells with a p-Type Polymeric Thin Layer on PEDOT:PSS.\",\"authors\":\"Xinkang Wang, Mingqing Chen, Peng Dou, Lianjie Zhang, Qingqing Bai, Xianglun Xie, Dongge Ma, Junwu Chen\",\"doi\":\"10.1002/marc.202401032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simultaneous improvement in power conversion efficiency (PCE) and device stability is very important for organic solar cells (OSCs). Herein, oligothiophene-based polymer W19 with excellent solvent resistance is exploited as a polymer thin layer to optimize the active layer morphology and then device efficiency and stability. Polymer W19 possesses a simple skeleton of trifluromethyl-substituted dithienoquinoxaline and quaterthiophene, whose thin layer shows suitable energy level, low surface energy, and strong interchain aggregation, leading to outstanding solvent resistance and excellent hole transport ability. Optimized vertical separation alleviates trap state density and energy loss, improves hole transfer dynamics, and balances the charge transport, thus maximizing open-circuit voltage, short-circuit current density, and fill factor simultaneously. A high PCE of 19.70% is achieved for the W19 treated devices. Noticeably, OSCs treated with W19 retained 87% of its initial PCE after continuous illumination for 800 h, which is higher than that of 74% of the control. Large area devices of 1 and 4 cm<sup>2</sup> can achieve high efficiencies of 17.36% and 14.46%, respectively. This work highlights that the polymer thin layer W19 with the ability of strong solvent resistance has the great potential to further improve the efficiency and photostability of OSCs.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2401032\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202401032\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401032","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

同时提高功率转换效率(PCE)和器件稳定性对有机太阳能电池(OSCs)非常重要。本文利用具有优异耐溶剂性的低聚噻吩基聚合物W19作为聚合物薄层,优化活性层形态,进而提高器件效率和稳定性。聚合物W19具有三氟甲基取代二噻吩和季噻吩的简单骨架,其薄层具有合适的能级,低表面能,强链间聚集,具有优异的耐溶剂性和良好的空穴传输能力。优化后的垂直分离降低了陷阱态密度和能量损失,改善了空穴转移动力学,平衡了电荷输运,从而同时最大化了开路电压、短路电流密度和填充因子。经过W19处理的器件的PCE高达19.70%。值得注意的是,经W19处理的OSCs在连续照明800 h后仍保留了初始PCE的87%,高于对照组的74%。1 cm2和4 cm2的大面积器件可以分别达到17.36%和14.46%的高效率。本工作强调了具有较强抗溶剂能力的聚合物薄层W19在进一步提高OSCs的效率和光稳定性方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Efficiency and Light Stability of Conventional Organic Solar Cells with a p-Type Polymeric Thin Layer on PEDOT:PSS.

Simultaneous improvement in power conversion efficiency (PCE) and device stability is very important for organic solar cells (OSCs). Herein, oligothiophene-based polymer W19 with excellent solvent resistance is exploited as a polymer thin layer to optimize the active layer morphology and then device efficiency and stability. Polymer W19 possesses a simple skeleton of trifluromethyl-substituted dithienoquinoxaline and quaterthiophene, whose thin layer shows suitable energy level, low surface energy, and strong interchain aggregation, leading to outstanding solvent resistance and excellent hole transport ability. Optimized vertical separation alleviates trap state density and energy loss, improves hole transfer dynamics, and balances the charge transport, thus maximizing open-circuit voltage, short-circuit current density, and fill factor simultaneously. A high PCE of 19.70% is achieved for the W19 treated devices. Noticeably, OSCs treated with W19 retained 87% of its initial PCE after continuous illumination for 800 h, which is higher than that of 74% of the control. Large area devices of 1 and 4 cm2 can achieve high efficiencies of 17.36% and 14.46%, respectively. This work highlights that the polymer thin layer W19 with the ability of strong solvent resistance has the great potential to further improve the efficiency and photostability of OSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Multicolor Mechanochromic Polymer Blends That Can Distinguish between Tensile-Stress States. Thermal Conductivity in Side-Chain Liquid-Crystal Epoxy Polymers: Influence of Mesogen Structure. Designed, Programmable Protein Cages Utilizing Diverse Metal Coordination Geometries Show Reversible, pH-Dependent Assembly. Antimicrobial Silicon Rubber Crosslinked with Bornyl-Siloxane. Direct Click Bonding of Dissimilar Solid Materials Based on the Catalyst-Free Huisgen 1,3-Dipolar Cycloaddition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1