Philipp-Cornelius Pott, Karolina Petsa, Christian Klose, Julian-Tobias Schleich, Neele Brümmer, Andreas Winkel, Hans Jürgen Maier, Meike Stiesch
{"title":"Nb-1Zr实验性牙种植体的承载能力。","authors":"Philipp-Cornelius Pott, Karolina Petsa, Christian Klose, Julian-Tobias Schleich, Neele Brümmer, Andreas Winkel, Hans Jürgen Maier, Meike Stiesch","doi":"10.1007/s10856-025-06858-7","DOIUrl":null,"url":null,"abstract":"<div><p>Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V. A standardized abutment made of Ti6Al4V was fabricated for each implant and screwed into the implant with a screw made of the same material. A shape-identical crown for an upper first molar was fabricated for all implants using the CAD/CAM technique. All specimens were artificially aged using chewing simulation for 1 × 10<sup>6</sup> cycles and thermocycling between 5 °C and 55 °C for 4 × 10<sup>3</sup> cycles. After that, all specimens were loaded until failure. This was followed by a 3D analysis of the deformation of the samples. 100% of the samples survived the artificial aging. The Nb1Zr samples failed at 2595 ± 1069 N. In the Ti6Al4V group, failure occurred at 2958 ± 1058 N. The first deformations occurred in both groups from a load of at least 1114 N. The 3D analysis revealed deformations of 0.08 mm in the implant shoulder area of the Nb1Zr implants and of 0.04 mm in the Ti6Al4V implants. This difference was significant (<i>p</i> = 0.016). The investigated Nb1Zr alloy appears to be suitable for implants. The measured load-bearing capacity is significantly higher than the expected intraoral masticatory forces.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-025-06858-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Load-bearing capacity of an experimental dental implant made of Nb-1Zr\",\"authors\":\"Philipp-Cornelius Pott, Karolina Petsa, Christian Klose, Julian-Tobias Schleich, Neele Brümmer, Andreas Winkel, Hans Jürgen Maier, Meike Stiesch\",\"doi\":\"10.1007/s10856-025-06858-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V. A standardized abutment made of Ti6Al4V was fabricated for each implant and screwed into the implant with a screw made of the same material. A shape-identical crown for an upper first molar was fabricated for all implants using the CAD/CAM technique. All specimens were artificially aged using chewing simulation for 1 × 10<sup>6</sup> cycles and thermocycling between 5 °C and 55 °C for 4 × 10<sup>3</sup> cycles. After that, all specimens were loaded until failure. This was followed by a 3D analysis of the deformation of the samples. 100% of the samples survived the artificial aging. The Nb1Zr samples failed at 2595 ± 1069 N. In the Ti6Al4V group, failure occurred at 2958 ± 1058 N. The first deformations occurred in both groups from a load of at least 1114 N. The 3D analysis revealed deformations of 0.08 mm in the implant shoulder area of the Nb1Zr implants and of 0.04 mm in the Ti6Al4V implants. This difference was significant (<i>p</i> = 0.016). The investigated Nb1Zr alloy appears to be suitable for implants. The measured load-bearing capacity is significantly higher than the expected intraoral masticatory forces.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10856-025-06858-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-025-06858-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-025-06858-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Load-bearing capacity of an experimental dental implant made of Nb-1Zr
Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V. A standardized abutment made of Ti6Al4V was fabricated for each implant and screwed into the implant with a screw made of the same material. A shape-identical crown for an upper first molar was fabricated for all implants using the CAD/CAM technique. All specimens were artificially aged using chewing simulation for 1 × 106 cycles and thermocycling between 5 °C and 55 °C for 4 × 103 cycles. After that, all specimens were loaded until failure. This was followed by a 3D analysis of the deformation of the samples. 100% of the samples survived the artificial aging. The Nb1Zr samples failed at 2595 ± 1069 N. In the Ti6Al4V group, failure occurred at 2958 ± 1058 N. The first deformations occurred in both groups from a load of at least 1114 N. The 3D analysis revealed deformations of 0.08 mm in the implant shoulder area of the Nb1Zr implants and of 0.04 mm in the Ti6Al4V implants. This difference was significant (p = 0.016). The investigated Nb1Zr alloy appears to be suitable for implants. The measured load-bearing capacity is significantly higher than the expected intraoral masticatory forces.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.