Taseer Ahmad, Rachelle Crescenzi, Valentina Kon, Annet Kirabo, Elaine L Shelton
{"title":"免疫细胞和淋巴管之间的钠定向串扰。","authors":"Taseer Ahmad, Rachelle Crescenzi, Valentina Kon, Annet Kirabo, Elaine L Shelton","doi":"10.1007/s11906-024-01322-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli. This review is intended to highlight the role of sodium within the local environment in mediating lymphatic and immune cell interactions that contribute to changes in function and disease progression.</p><p><strong>Recent findings: </strong>We discuss evidence that accumulation of interstitial sodium modulates lymphatic growth, pumping dynamics, and permeability of renal lymphatics, which involves activation of sodium potassium chloride co-transporter (NKCC1) in lymphatic endothelial cells. These recent findings complement observations that sodium activates immune cells via the epithelial sodium channel (ENaC), leading to the formation and accumulation of lipid oxidation products, isolevuglandins (IsoLGs), in antigen presenting cells, which in turn promotes T cell activation and vasculopathy. In addition, we will underscore the physiologic relevance of altered interplay between immune cells and lymphatics in the sodium avid state that characterizes kidney diseases and consider how sodium accumulation in the interstitial compartment of the kidney modulates the lymphatic network and the interactions between renal lymphatics and activated immune cells. Finally, this article calls attention to persisting knowledge gaps and stresses the need for additional studies to identify salt-sensing mechanisms, including sodium-activated immune cells and lymphatic endothelial cell interactions, for targeted therapeutic interventions in the setting of renal disease.</p>","PeriodicalId":10963,"journal":{"name":"Current Hypertension Reports","volume":"27 1","pages":"7"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735487/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sodium-Directed Crosstalk Between Immune Cells and Lymphatic Vessels.\",\"authors\":\"Taseer Ahmad, Rachelle Crescenzi, Valentina Kon, Annet Kirabo, Elaine L Shelton\",\"doi\":\"10.1007/s11906-024-01322-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli. This review is intended to highlight the role of sodium within the local environment in mediating lymphatic and immune cell interactions that contribute to changes in function and disease progression.</p><p><strong>Recent findings: </strong>We discuss evidence that accumulation of interstitial sodium modulates lymphatic growth, pumping dynamics, and permeability of renal lymphatics, which involves activation of sodium potassium chloride co-transporter (NKCC1) in lymphatic endothelial cells. These recent findings complement observations that sodium activates immune cells via the epithelial sodium channel (ENaC), leading to the formation and accumulation of lipid oxidation products, isolevuglandins (IsoLGs), in antigen presenting cells, which in turn promotes T cell activation and vasculopathy. In addition, we will underscore the physiologic relevance of altered interplay between immune cells and lymphatics in the sodium avid state that characterizes kidney diseases and consider how sodium accumulation in the interstitial compartment of the kidney modulates the lymphatic network and the interactions between renal lymphatics and activated immune cells. Finally, this article calls attention to persisting knowledge gaps and stresses the need for additional studies to identify salt-sensing mechanisms, including sodium-activated immune cells and lymphatic endothelial cell interactions, for targeted therapeutic interventions in the setting of renal disease.</p>\",\"PeriodicalId\":10963,\"journal\":{\"name\":\"Current Hypertension Reports\",\"volume\":\"27 1\",\"pages\":\"7\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735487/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Hypertension Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11906-024-01322-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Hypertension Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11906-024-01322-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Sodium-Directed Crosstalk Between Immune Cells and Lymphatic Vessels.
Purpose of review: The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli. This review is intended to highlight the role of sodium within the local environment in mediating lymphatic and immune cell interactions that contribute to changes in function and disease progression.
Recent findings: We discuss evidence that accumulation of interstitial sodium modulates lymphatic growth, pumping dynamics, and permeability of renal lymphatics, which involves activation of sodium potassium chloride co-transporter (NKCC1) in lymphatic endothelial cells. These recent findings complement observations that sodium activates immune cells via the epithelial sodium channel (ENaC), leading to the formation and accumulation of lipid oxidation products, isolevuglandins (IsoLGs), in antigen presenting cells, which in turn promotes T cell activation and vasculopathy. In addition, we will underscore the physiologic relevance of altered interplay between immune cells and lymphatics in the sodium avid state that characterizes kidney diseases and consider how sodium accumulation in the interstitial compartment of the kidney modulates the lymphatic network and the interactions between renal lymphatics and activated immune cells. Finally, this article calls attention to persisting knowledge gaps and stresses the need for additional studies to identify salt-sensing mechanisms, including sodium-activated immune cells and lymphatic endothelial cell interactions, for targeted therapeutic interventions in the setting of renal disease.
期刊介绍:
This journal intends to provide clear, insightful, balanced contributions by international experts that review the most important, recently published clinical findings related to the diagnosis, treatment, management, and prevention of hypertension.
We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas, such as antihypertensive therapies, associated metabolic disorders, and therapeutic trials. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An international Editorial Board reviews the annual table of contents, suggests articles of special interest to their country/region, and ensures that topics are current and include emerging research. Commentaries from well-known figures in the field are also provided.