使用可解释的机器学习和大型语言模型在化学中人类可解释的结构-性质关系。

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2025-01-14 DOI:10.1038/s42004-024-01393-y
Geemi P Wellawatte, Philippe Schwaller
{"title":"使用可解释的机器学习和大型语言模型在化学中人类可解释的结构-性质关系。","authors":"Geemi P Wellawatte, Philippe Schwaller","doi":"10.1038/s42004-024-01393-y","DOIUrl":null,"url":null,"abstract":"<p><p>Explainable Artificial Intelligence (XAI) is an emerging field in AI that aims to address the opaque nature of machine learning models. Furthermore, it has been shown that XAI can be used to extract input-output relationships, making them a useful tool in chemistry to understand structure-property relationships. However, one of the main limitations of XAI methods is that they are developed for technically oriented users. We propose the XpertAI framework that integrates XAI methods with large language models (LLMs) accessing scientific literature to generate accessible natural language explanations of raw chemical data automatically. We conducted 5 case studies to evaluate the performance of XpertAI. Our results show that XpertAI combines the strengths of LLMs and XAI tools in generating specific, scientific, and interpretable explanations.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"11"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733140/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human interpretable structure-property relationships in chemistry using explainable machine learning and large language models.\",\"authors\":\"Geemi P Wellawatte, Philippe Schwaller\",\"doi\":\"10.1038/s42004-024-01393-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Explainable Artificial Intelligence (XAI) is an emerging field in AI that aims to address the opaque nature of machine learning models. Furthermore, it has been shown that XAI can be used to extract input-output relationships, making them a useful tool in chemistry to understand structure-property relationships. However, one of the main limitations of XAI methods is that they are developed for technically oriented users. We propose the XpertAI framework that integrates XAI methods with large language models (LLMs) accessing scientific literature to generate accessible natural language explanations of raw chemical data automatically. We conducted 5 case studies to evaluate the performance of XpertAI. Our results show that XpertAI combines the strengths of LLMs and XAI tools in generating specific, scientific, and interpretable explanations.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"11\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733140/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-024-01393-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-024-01393-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可解释人工智能(XAI)是人工智能的一个新兴领域,旨在解决机器学习模型的不透明性。此外,研究表明,XAI可以用于提取输入输出关系,使其成为化学中理解结构-性质关系的有用工具。然而,XAI方法的主要限制之一是它们是为面向技术的用户开发的。我们提出了XpertAI框架,该框架将XAI方法与访问科学文献的大型语言模型(llm)集成在一起,自动生成原始化学数据的可访问自然语言解释。我们进行了5个案例研究来评估XpertAI的性能。我们的研究结果表明,XpertAI结合了llm和XAI工具在生成特定、科学和可解释的解释方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human interpretable structure-property relationships in chemistry using explainable machine learning and large language models.

Explainable Artificial Intelligence (XAI) is an emerging field in AI that aims to address the opaque nature of machine learning models. Furthermore, it has been shown that XAI can be used to extract input-output relationships, making them a useful tool in chemistry to understand structure-property relationships. However, one of the main limitations of XAI methods is that they are developed for technically oriented users. We propose the XpertAI framework that integrates XAI methods with large language models (LLMs) accessing scientific literature to generate accessible natural language explanations of raw chemical data automatically. We conducted 5 case studies to evaluate the performance of XpertAI. Our results show that XpertAI combines the strengths of LLMs and XAI tools in generating specific, scientific, and interpretable explanations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Chemical reactivity of RNA and its modifications with hydrazine. Measurement of phospholipid lateral diffusion at high pressure by in situ magic-angle spinning NMR spectroscopy. Spin-state effect on the efficiency of a post-synthetic modification reaction on a spin crossover complex. Women in chemistry: Q&A with Dr Qi Hao. Women in chemistry: Q&A with Professor Mónica H. Pérez-Temprano.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1