猪外伤性脊髓损伤后的脑脊液动力学和蛛网膜下腔闭塞:利用磁共振成像进行的研究。

IF 5.9 1区 医学 Q1 NEUROSCIENCES Fluids and Barriers of the CNS Pub Date : 2025-01-14 DOI:10.1186/s12987-024-00595-9
Madeleine Amy Bessen, Christine Diana Gayen, Ryan L O'Hare Doig, Ryan Michael Dorrian, Ryan David Quarrington, Adnan Mulaibrahimovic, Vartan Kurtcuoglu, Angela Catherine Walls, Anna Victoria Leonard, Claire Frances Jones
{"title":"猪外伤性脊髓损伤后的脑脊液动力学和蛛网膜下腔闭塞:利用磁共振成像进行的研究。","authors":"Madeleine Amy Bessen, Christine Diana Gayen, Ryan L O'Hare Doig, Ryan Michael Dorrian, Ryan David Quarrington, Adnan Mulaibrahimovic, Vartan Kurtcuoglu, Angela Catherine Walls, Anna Victoria Leonard, Claire Frances Jones","doi":"10.1186/s12987-024-00595-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.</p><p><strong>Methods: </strong>A thoracic contusion SCI was induced in female domestic pigs (22-29 kg) via a weight drop apparatus (N = 5, 10 cm; N = 5, 20 cm). Magnetic resonance imaging (MRI) was performed pre-SCI and 3, 7 and 14 days post-SCI. SAS occlusion length (cranial-caudal), and injury site SAS area (cross-sectional), were measured on T2-weighted MRI. CSF dynamics, specifically peak cranial/caudal mean velocity (cm/s), and the corresponding time to peak (% of cardiac cycle), were measured on cardiac gated, axial phase-contrast MRI obtained at C2/C3, T8/T9, T11/T12 and L1/L2. Linear-mixed effects models, with a significance level of α = 0.05, were developed to assess the effect of: (1) injury group and time point on SAS occlusion measures; and (2), time point and spinal level, adjusted by injury group, on CSF dynamics.</p><p><strong>Results: </strong>For both injury groups, SAS occlusion length decreased from 3 to 7 days post-SCI, and 7 to 14 days post-SCI. The cross-sectional SAS area decreased after SCI, and increased to 14 days post-SCI, in both groups. At all spinal levels, peak cranial/caudal mean velocity and the time to peak caudal mean velocity decreased at day 3 post-SCI. From 3 to 14 days post-SCI, peak caudal mean velocity and the time to peak caudal mean velocity increased towards baseline values, at all spinal levels.</p><p><strong>Conclusions: </strong>Spinal-level specific changes to CSF dynamics, with concurrent changes to SAS occlusion, occurred after SCI in the pig, suggesting that CSF pulsatility and craniospinal compliance were altered in the sub-acute post-traumatic period. These results suggest that PC-MRI derived CSF dynamics may provide a non-invasive method to investigate functional alterations to the spinal intrathecal space following traumatic SCI.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"6"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730158/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cerebrospinal fluid dynamics and subarachnoid space occlusion following traumatic spinal cord injury in the pig: an investigation using magnetic resonance imaging.\",\"authors\":\"Madeleine Amy Bessen, Christine Diana Gayen, Ryan L O'Hare Doig, Ryan Michael Dorrian, Ryan David Quarrington, Adnan Mulaibrahimovic, Vartan Kurtcuoglu, Angela Catherine Walls, Anna Victoria Leonard, Claire Frances Jones\",\"doi\":\"10.1186/s12987-024-00595-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.</p><p><strong>Methods: </strong>A thoracic contusion SCI was induced in female domestic pigs (22-29 kg) via a weight drop apparatus (N = 5, 10 cm; N = 5, 20 cm). Magnetic resonance imaging (MRI) was performed pre-SCI and 3, 7 and 14 days post-SCI. SAS occlusion length (cranial-caudal), and injury site SAS area (cross-sectional), were measured on T2-weighted MRI. CSF dynamics, specifically peak cranial/caudal mean velocity (cm/s), and the corresponding time to peak (% of cardiac cycle), were measured on cardiac gated, axial phase-contrast MRI obtained at C2/C3, T8/T9, T11/T12 and L1/L2. Linear-mixed effects models, with a significance level of α = 0.05, were developed to assess the effect of: (1) injury group and time point on SAS occlusion measures; and (2), time point and spinal level, adjusted by injury group, on CSF dynamics.</p><p><strong>Results: </strong>For both injury groups, SAS occlusion length decreased from 3 to 7 days post-SCI, and 7 to 14 days post-SCI. The cross-sectional SAS area decreased after SCI, and increased to 14 days post-SCI, in both groups. At all spinal levels, peak cranial/caudal mean velocity and the time to peak caudal mean velocity decreased at day 3 post-SCI. From 3 to 14 days post-SCI, peak caudal mean velocity and the time to peak caudal mean velocity increased towards baseline values, at all spinal levels.</p><p><strong>Conclusions: </strong>Spinal-level specific changes to CSF dynamics, with concurrent changes to SAS occlusion, occurred after SCI in the pig, suggesting that CSF pulsatility and craniospinal compliance were altered in the sub-acute post-traumatic period. These results suggest that PC-MRI derived CSF dynamics may provide a non-invasive method to investigate functional alterations to the spinal intrathecal space following traumatic SCI.</p>\",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"22 1\",\"pages\":\"6\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730158/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-024-00595-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00595-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:外伤性脊髓损伤(SCI)引起脊髓肿胀和蛛网膜下腔(SAS)闭塞。SAS闭塞可改变脉动性脑脊液(CSF)动力学,这可能具有急性临床管理意义。本研究旨在表征SAS闭塞,并研究脊髓损伤后14天的脑脊液动力学。方法:采用减重装置(N = 5、10 cm;N = 5, 20 cm)。分别于脊髓损伤前、脊髓损伤后3、7、14天进行磁共振成像(MRI)检查。在t2加权MRI上测量SAS闭塞长度(颅尾)和损伤部位SAS面积(横截面)。在C2/C3、T8/T9、T11/T12和L1/L2的心脏门控轴向相衬MRI上测量脑脊液动力学,特别是峰值颅/尾平均速度(cm/s),以及相应的峰值时间(心脏周期的百分比)。建立线性混合效应模型,显著性水平为α = 0.05,评价:(1)损伤组和时间点对SAS闭塞测量的影响;(2)损伤组调整的时间点和脊柱水平对脑脊液动力学的影响。结果:两组损伤后SAS闭塞长度分别从脊髓损伤后3 ~ 7天和脊髓损伤后7 ~ 14天减少。两组脊髓损伤后横截SAS面积均减少,脊髓损伤后14天均增加。在所有脊柱水平,峰值颅/尾平均速度和峰值尾平均速度的时间在脊髓损伤后第3天减少。脊髓损伤后3 - 14天,所有脊柱水平的峰值平均尾端速度和峰值平均尾端速度的时间向基线值增加。结论:脊髓损伤后猪脊脊液动力学的脊柱水平特异性改变,同时伴有SAS闭塞的改变,表明在亚急性创伤后时期脑脊液脉搏和颅脊髓顺应性发生了改变。这些结果表明,PC-MRI衍生的脑脊液动力学可以提供一种非侵入性方法来研究创伤性脊髓损伤后脊髓鞘内间隙的功能改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cerebrospinal fluid dynamics and subarachnoid space occlusion following traumatic spinal cord injury in the pig: an investigation using magnetic resonance imaging.

Background: Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.

Methods: A thoracic contusion SCI was induced in female domestic pigs (22-29 kg) via a weight drop apparatus (N = 5, 10 cm; N = 5, 20 cm). Magnetic resonance imaging (MRI) was performed pre-SCI and 3, 7 and 14 days post-SCI. SAS occlusion length (cranial-caudal), and injury site SAS area (cross-sectional), were measured on T2-weighted MRI. CSF dynamics, specifically peak cranial/caudal mean velocity (cm/s), and the corresponding time to peak (% of cardiac cycle), were measured on cardiac gated, axial phase-contrast MRI obtained at C2/C3, T8/T9, T11/T12 and L1/L2. Linear-mixed effects models, with a significance level of α = 0.05, were developed to assess the effect of: (1) injury group and time point on SAS occlusion measures; and (2), time point and spinal level, adjusted by injury group, on CSF dynamics.

Results: For both injury groups, SAS occlusion length decreased from 3 to 7 days post-SCI, and 7 to 14 days post-SCI. The cross-sectional SAS area decreased after SCI, and increased to 14 days post-SCI, in both groups. At all spinal levels, peak cranial/caudal mean velocity and the time to peak caudal mean velocity decreased at day 3 post-SCI. From 3 to 14 days post-SCI, peak caudal mean velocity and the time to peak caudal mean velocity increased towards baseline values, at all spinal levels.

Conclusions: Spinal-level specific changes to CSF dynamics, with concurrent changes to SAS occlusion, occurred after SCI in the pig, suggesting that CSF pulsatility and craniospinal compliance were altered in the sub-acute post-traumatic period. These results suggest that PC-MRI derived CSF dynamics may provide a non-invasive method to investigate functional alterations to the spinal intrathecal space following traumatic SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
期刊最新文献
Age-related cerebral ventriculomegaly occurs in patients with primary ciliary dyskinesia. Endothelial and neuronal engagement by AAV-BR1 gene therapy alleviates neurological symptoms and lipid deposition in a mouse model of Niemann-Pick type C2. Increasing brain half-life of antibodies by additional binding to myelin oligodendrocyte glycoprotein, a CNS specific protein. A novel method for detecting intracranial pressure changes by monitoring cerebral perfusion via electrical impedance tomography. Exploring the ability of plasma pTau217, pTau181 and beta-amyloid in mirroring cerebrospinal fluid biomarker profile of Mild Cognitive Impairment by the fully automated Lumipulse® platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1