在急性肝损伤大鼠模型中,白藜芦醇减轻环磷酰胺诱导的肝细胞凋亡,并与氧化应激和炎症的抑制有关。

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY Tissue & cell Pub Date : 2025-01-07 DOI:10.1016/j.tice.2025.102728
Mohammed A Alshehri, Mohammed Alissa, Abdullah Alghamdi
{"title":"在急性肝损伤大鼠模型中,白藜芦醇减轻环磷酰胺诱导的肝细胞凋亡,并与氧化应激和炎症的抑制有关。","authors":"Mohammed A Alshehri, Mohammed Alissa, Abdullah Alghamdi","doi":"10.1016/j.tice.2025.102728","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclophosphamide (CP) is an alkylating chemotherapy agent that induces liver toxicity by cross-linking DNA, causing cell apoptosis. While CP is effective in cancer treatment, its side effects on the liver are significant. Recent studies have indicated that antioxidants, such as resveratrol, may reduce these toxic effects. In this study, we aimed to investigate the role of resveratrol in mitigating CP-induced hepatic apoptosis, oxidative stress, and inflammation in rats. Twenty male mature Sprague-Dawley rats were divided into 4 groups of equal size: control group, Resveratrol group which received resveratrol (20 mg/kg) for 15 consecutive days, CP group which received CP as a single dose (150 mg/kg) on day 16, and CP+Resveratrol group which was similar of the resveratrol and CP groups. Tissue samples were obtained for the histological, immunohistochemical, biochemical, and molecular evaluations. Findings showed that treatment with CP significantly decreased the total liver volume, numerical density of hepatocytes, length density of sinusoidals, and concentrations of antioxidative biomarkers (GSH and SOD). However, the CP+Resveratrol group exhibited notably greater values in these parameters compared to the CP group. Additionally, CP treatment resulted in a significant increase in serum levels of AST and ALT, higher numerical density of Kupffer cells, increased densities of apoptotic cells (increased Bax and caspase-3, and decreased Bcl-2 expression levels), elevated levels of MDA, and upregulated inflammatory genes (IL-1β and TNF-α). In contrast, co-treatment with resveratrol significantly reduced these parameters, suggesting its protective effects against CP-induced liver toxicity. We conclude that giving resveratrol can attenuate apoptosis, oxidative stress, inflammation, and histological alterations in the liver induced by CP toxicity.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102728"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resveratrol attenuates cyclophosphamide-induced hepatic apoptosis in association with the inhibition of oxidative stress and inflammation in a rat model of acute liver injury.\",\"authors\":\"Mohammed A Alshehri, Mohammed Alissa, Abdullah Alghamdi\",\"doi\":\"10.1016/j.tice.2025.102728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyclophosphamide (CP) is an alkylating chemotherapy agent that induces liver toxicity by cross-linking DNA, causing cell apoptosis. While CP is effective in cancer treatment, its side effects on the liver are significant. Recent studies have indicated that antioxidants, such as resveratrol, may reduce these toxic effects. In this study, we aimed to investigate the role of resveratrol in mitigating CP-induced hepatic apoptosis, oxidative stress, and inflammation in rats. Twenty male mature Sprague-Dawley rats were divided into 4 groups of equal size: control group, Resveratrol group which received resveratrol (20 mg/kg) for 15 consecutive days, CP group which received CP as a single dose (150 mg/kg) on day 16, and CP+Resveratrol group which was similar of the resveratrol and CP groups. Tissue samples were obtained for the histological, immunohistochemical, biochemical, and molecular evaluations. Findings showed that treatment with CP significantly decreased the total liver volume, numerical density of hepatocytes, length density of sinusoidals, and concentrations of antioxidative biomarkers (GSH and SOD). However, the CP+Resveratrol group exhibited notably greater values in these parameters compared to the CP group. Additionally, CP treatment resulted in a significant increase in serum levels of AST and ALT, higher numerical density of Kupffer cells, increased densities of apoptotic cells (increased Bax and caspase-3, and decreased Bcl-2 expression levels), elevated levels of MDA, and upregulated inflammatory genes (IL-1β and TNF-α). In contrast, co-treatment with resveratrol significantly reduced these parameters, suggesting its protective effects against CP-induced liver toxicity. We conclude that giving resveratrol can attenuate apoptosis, oxidative stress, inflammation, and histological alterations in the liver induced by CP toxicity.</p>\",\"PeriodicalId\":23201,\"journal\":{\"name\":\"Tissue & cell\",\"volume\":\"93 \",\"pages\":\"102728\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue & cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tice.2025.102728\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.102728","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环磷酰胺(Cyclophosphamide, CP)是一种烷基化化疗药物,通过DNA交联诱导肝毒性,导致细胞凋亡。虽然CP在癌症治疗中是有效的,但它对肝脏的副作用是显著的。最近的研究表明,抗氧化剂,如白藜芦醇,可能会减少这些毒性作用。在本研究中,我们旨在探讨白藜芦醇在减轻cp诱导的大鼠肝脏凋亡、氧化应激和炎症中的作用。将20只雄性成年sd大鼠分为4组,每组大小相同:对照组、白藜芦醇组(20 mg/kg)连续15 d、CP组(第16天单次给药(150 mg/kg)、CP+白藜芦醇组(与CP组相同)。获得组织样本进行组织学、免疫组织化学、生化和分子评价。结果显示,CP治疗显著降低肝脏总体积、肝细胞数值密度、窦状细胞长度密度和抗氧化生物标志物(GSH和SOD)浓度。然而,CP+白藜芦醇组在这些参数上的值明显高于CP组。此外,CP处理导致血清AST和ALT水平显著升高,Kupffer细胞数值密度增加,凋亡细胞密度增加(Bax和caspase-3增加,Bcl-2表达水平降低),MDA水平升高,炎症基因(IL-1β和TNF-α)上调。相比之下,与白藜芦醇共处理可显著降低这些参数,提示其对cp诱导的肝毒性具有保护作用。我们得出结论,给予白藜芦醇可以减轻CP毒性引起的肝脏细胞凋亡、氧化应激、炎症和组织学改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resveratrol attenuates cyclophosphamide-induced hepatic apoptosis in association with the inhibition of oxidative stress and inflammation in a rat model of acute liver injury.

Cyclophosphamide (CP) is an alkylating chemotherapy agent that induces liver toxicity by cross-linking DNA, causing cell apoptosis. While CP is effective in cancer treatment, its side effects on the liver are significant. Recent studies have indicated that antioxidants, such as resveratrol, may reduce these toxic effects. In this study, we aimed to investigate the role of resveratrol in mitigating CP-induced hepatic apoptosis, oxidative stress, and inflammation in rats. Twenty male mature Sprague-Dawley rats were divided into 4 groups of equal size: control group, Resveratrol group which received resveratrol (20 mg/kg) for 15 consecutive days, CP group which received CP as a single dose (150 mg/kg) on day 16, and CP+Resveratrol group which was similar of the resveratrol and CP groups. Tissue samples were obtained for the histological, immunohistochemical, biochemical, and molecular evaluations. Findings showed that treatment with CP significantly decreased the total liver volume, numerical density of hepatocytes, length density of sinusoidals, and concentrations of antioxidative biomarkers (GSH and SOD). However, the CP+Resveratrol group exhibited notably greater values in these parameters compared to the CP group. Additionally, CP treatment resulted in a significant increase in serum levels of AST and ALT, higher numerical density of Kupffer cells, increased densities of apoptotic cells (increased Bax and caspase-3, and decreased Bcl-2 expression levels), elevated levels of MDA, and upregulated inflammatory genes (IL-1β and TNF-α). In contrast, co-treatment with resveratrol significantly reduced these parameters, suggesting its protective effects against CP-induced liver toxicity. We conclude that giving resveratrol can attenuate apoptosis, oxidative stress, inflammation, and histological alterations in the liver induced by CP toxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
期刊最新文献
Resilience in adversity: Exploring adaptive changes in cancer cells under stress. High expression of SERPINE1 and CTSL in keratinocytes in pressure injury caused by ischemia-reperfusion injury. Impact of smoking on oral mucosa: A cytological and cellular proliferation study. Acceleration of bone healing by a growth factor-releasing allo-hybrid graft. The effects of autophagy-modifying drugs chloroquine and lithium on the skin melanoma microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1