Louise Kollander Jakobsen , Victor Kjærulf , Janet Bray , Theresa Mariero Olasveengen , Fredrik Folke , on behalf of the International Liaison Committee on Resuscitation Basic Life Support Task Force
{"title":"为院外心脏骤停提供自动体外除颤器的无人机:范围审查。","authors":"Louise Kollander Jakobsen , Victor Kjærulf , Janet Bray , Theresa Mariero Olasveengen , Fredrik Folke , on behalf of the International Liaison Committee on Resuscitation Basic Life Support Task Force","doi":"10.1016/j.resplu.2024.100841","DOIUrl":null,"url":null,"abstract":"<div><h3>Aim</h3><div>Out-of-hospital cardiac arrest (OHCA) remains a critical health concern, where prompt access to automated external defibrillators (AEDs) significantly improves survival. This scoping review broadly investigates the feasibility and impact of dronedelivered AEDs for OHCA response. Methods: PubMed, Cochrane, and Web of Science were searched from inception to August 6, 2024, with eligibility broadly including empirical data. The charting process involved iterative data extraction for thematic analysis. Results: We identified 306 titles and, after duplicate removal, title/abstract screening, and full text review, included 39 studies. These were divided into three categories: 1) Real-world observational studies (n = 3), 2) Test flights/simulation studies and qualitative analyses (n = 15), and 3) Computer/prediction models (n = 21). Real-world studies demonstrated the feasibility of drone AED delivery, with a time advantage of 01:52 – 03:14 min over ambulances observed in 64–67 % of cases. Test flight/simulation and qualitative studies consistently reported feasibility and positive bystander experiences. Computer/prediction models exhibited considerable heterogeneity, yet all indicated significant time savings for AED delivery compared to traditional EMS methods. Moreover, seven studies estimated improved survival rates, with five assessing cost-effectiveness and favouring drone systems. Regional factors such as EMS response times, volunteer responder programmes, terrain, weather, and budget constraints influenced the system’s effectiveness. Conclusion: Across all categories, studies confirmed the feasibility of drone-delivered AED systems, with significant potential for reducing time to AED arrival compared to EMS arrival. Prediction models suggested enhanced survival alongside costeffectiveness. Further research, including more extensive real-world studies and regulatory advancements, is imperative to integrate drones effectively into OHCA response systems.</div></div>","PeriodicalId":94192,"journal":{"name":"Resuscitation plus","volume":"21 ","pages":"Article 100841"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730569/pdf/","citationCount":"0","resultStr":"{\"title\":\"Drones delivering automated external defibrillators for out-of-hospital cardiac arrest: A scoping review\",\"authors\":\"Louise Kollander Jakobsen , Victor Kjærulf , Janet Bray , Theresa Mariero Olasveengen , Fredrik Folke , on behalf of the International Liaison Committee on Resuscitation Basic Life Support Task Force\",\"doi\":\"10.1016/j.resplu.2024.100841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aim</h3><div>Out-of-hospital cardiac arrest (OHCA) remains a critical health concern, where prompt access to automated external defibrillators (AEDs) significantly improves survival. This scoping review broadly investigates the feasibility and impact of dronedelivered AEDs for OHCA response. Methods: PubMed, Cochrane, and Web of Science were searched from inception to August 6, 2024, with eligibility broadly including empirical data. The charting process involved iterative data extraction for thematic analysis. Results: We identified 306 titles and, after duplicate removal, title/abstract screening, and full text review, included 39 studies. These were divided into three categories: 1) Real-world observational studies (n = 3), 2) Test flights/simulation studies and qualitative analyses (n = 15), and 3) Computer/prediction models (n = 21). Real-world studies demonstrated the feasibility of drone AED delivery, with a time advantage of 01:52 – 03:14 min over ambulances observed in 64–67 % of cases. Test flight/simulation and qualitative studies consistently reported feasibility and positive bystander experiences. Computer/prediction models exhibited considerable heterogeneity, yet all indicated significant time savings for AED delivery compared to traditional EMS methods. Moreover, seven studies estimated improved survival rates, with five assessing cost-effectiveness and favouring drone systems. Regional factors such as EMS response times, volunteer responder programmes, terrain, weather, and budget constraints influenced the system’s effectiveness. Conclusion: Across all categories, studies confirmed the feasibility of drone-delivered AED systems, with significant potential for reducing time to AED arrival compared to EMS arrival. Prediction models suggested enhanced survival alongside costeffectiveness. Further research, including more extensive real-world studies and regulatory advancements, is imperative to integrate drones effectively into OHCA response systems.</div></div>\",\"PeriodicalId\":94192,\"journal\":{\"name\":\"Resuscitation plus\",\"volume\":\"21 \",\"pages\":\"Article 100841\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730569/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resuscitation plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666520424002923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resuscitation plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666520424002923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Drones delivering automated external defibrillators for out-of-hospital cardiac arrest: A scoping review
Aim
Out-of-hospital cardiac arrest (OHCA) remains a critical health concern, where prompt access to automated external defibrillators (AEDs) significantly improves survival. This scoping review broadly investigates the feasibility and impact of dronedelivered AEDs for OHCA response. Methods: PubMed, Cochrane, and Web of Science were searched from inception to August 6, 2024, with eligibility broadly including empirical data. The charting process involved iterative data extraction for thematic analysis. Results: We identified 306 titles and, after duplicate removal, title/abstract screening, and full text review, included 39 studies. These were divided into three categories: 1) Real-world observational studies (n = 3), 2) Test flights/simulation studies and qualitative analyses (n = 15), and 3) Computer/prediction models (n = 21). Real-world studies demonstrated the feasibility of drone AED delivery, with a time advantage of 01:52 – 03:14 min over ambulances observed in 64–67 % of cases. Test flight/simulation and qualitative studies consistently reported feasibility and positive bystander experiences. Computer/prediction models exhibited considerable heterogeneity, yet all indicated significant time savings for AED delivery compared to traditional EMS methods. Moreover, seven studies estimated improved survival rates, with five assessing cost-effectiveness and favouring drone systems. Regional factors such as EMS response times, volunteer responder programmes, terrain, weather, and budget constraints influenced the system’s effectiveness. Conclusion: Across all categories, studies confirmed the feasibility of drone-delivered AED systems, with significant potential for reducing time to AED arrival compared to EMS arrival. Prediction models suggested enhanced survival alongside costeffectiveness. Further research, including more extensive real-world studies and regulatory advancements, is imperative to integrate drones effectively into OHCA response systems.