由你的邻居判断:大样本和异质样本的大脑结构规范性概况。

Ramona Leenings, Nils R Winter, Jan Ernsting, Maximilian Konowski, Vincent Holstein, Susanne Meinert, Jennifer Spanagel, Carlotta Barkhau, Lukas Fisch, Janik Goltermann, Malte Frank Gerdes, Dominik Grotegerd, Elisabeth Johanna Leehr, Annette Peters, Lilian Krist, Stefan N Willich, Tobias Pischon, Henry Völzke, Johannes Haubold, Hans-Ulrich Kauczor, Thoralf Niendorf, Maike Frederike Richter, Udo Dannlowski, Klaus Berger, Xiaoyi Jiang, James Cole, Nils Opel, Tim Hahn
{"title":"由你的邻居判断:大样本和异质样本的大脑结构规范性概况。","authors":"Ramona Leenings, Nils R Winter, Jan Ernsting, Maximilian Konowski, Vincent Holstein, Susanne Meinert, Jennifer Spanagel, Carlotta Barkhau, Lukas Fisch, Janik Goltermann, Malte Frank Gerdes, Dominik Grotegerd, Elisabeth Johanna Leehr, Annette Peters, Lilian Krist, Stefan N Willich, Tobias Pischon, Henry Völzke, Johannes Haubold, Hans-Ulrich Kauczor, Thoralf Niendorf, Maike Frederike Richter, Udo Dannlowski, Klaus Berger, Xiaoyi Jiang, James Cole, Nils Opel, Tim Hahn","doi":"10.1101/2024.12.24.24319598","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of norm deviations is fundamental to clinical decision making and impacts our ability to diagnose and treat diseases effectively. Current normative modeling approaches rely on generic comparisons and quantify deviations in relation to the population average. However, generic models interpolate subtle nuances and risk the loss of critical information, thereby compromising effective personalization of health care strategies. To acknowledge the substantial heterogeneity among patients and support the paradigm shift of precision medicine, we introduce Nearest Neighbor Normativity (N <sup>3</sup> ), which is a strategy to refine normativity evaluations in diverse and heterogeneous clinical study populations. We address current methodological shortcomings by accommodating several equally normative population prototypes, comparing individuals from multiple perspectives and designing specifically tailored control groups. Applied to brain structure in 36,896 individuals, the N <sup>3</sup> framework provides empirical evidence for its utility and significantly outperforms traditional methods in the detection of pathological alterations. Our results underscore N <sup>3</sup> 's potential for individual assessments in medical practice, where norm deviations are not merely a benchmark, but an important metric supporting the realization of personalized patient care.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703290/pdf/","citationCount":"0","resultStr":"{\"title\":\"Judged by your neighbors: Brain structural normativity profiles for large and heterogeneous samples.\",\"authors\":\"Ramona Leenings, Nils R Winter, Jan Ernsting, Maximilian Konowski, Vincent Holstein, Susanne Meinert, Jennifer Spanagel, Carlotta Barkhau, Lukas Fisch, Janik Goltermann, Malte Frank Gerdes, Dominik Grotegerd, Elisabeth Johanna Leehr, Annette Peters, Lilian Krist, Stefan N Willich, Tobias Pischon, Henry Völzke, Johannes Haubold, Hans-Ulrich Kauczor, Thoralf Niendorf, Maike Frederike Richter, Udo Dannlowski, Klaus Berger, Xiaoyi Jiang, James Cole, Nils Opel, Tim Hahn\",\"doi\":\"10.1101/2024.12.24.24319598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection of norm deviations is fundamental to clinical decision making and impacts our ability to diagnose and treat diseases effectively. Current normative modeling approaches rely on generic comparisons and quantify deviations in relation to the population average. However, generic models interpolate subtle nuances and risk the loss of critical information, thereby compromising effective personalization of health care strategies. To acknowledge the substantial heterogeneity among patients and support the paradigm shift of precision medicine, we introduce Nearest Neighbor Normativity (N <sup>3</sup> ), which is a strategy to refine normativity evaluations in diverse and heterogeneous clinical study populations. We address current methodological shortcomings by accommodating several equally normative population prototypes, comparing individuals from multiple perspectives and designing specifically tailored control groups. Applied to brain structure in 36,896 individuals, the N <sup>3</sup> framework provides empirical evidence for its utility and significantly outperforms traditional methods in the detection of pathological alterations. Our results underscore N <sup>3</sup> 's potential for individual assessments in medical practice, where norm deviations are not merely a benchmark, but an important metric supporting the realization of personalized patient care.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703290/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.12.24.24319598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.24.24319598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

检测常模偏差是临床决策的基础,影响着我们有效诊断和治疗疾病的能力。目前的常模建模方法依赖于通用比较,并量化与人群平均值的偏差。然而,通用模型会对细微差别进行内插,有可能丢失关键信息,从而影响医疗策略的有效个性化。为了承认患者之间的巨大异质性并支持精准医疗的模式转变,我们引入了最近邻规范性(N3),这是一种在多样化和异质性临床研究人群中完善规范性评估的策略。我们解决了目前方法学上的缺陷,将几个同样规范的人群原型纳入其中,从多个角度对个体进行比较,并设计了专门定制的对照组。N3 框架应用于 36,896 人的大脑结构,为其实用性提供了经验证据,在病理改变的检测方面明显优于传统方法。我们的研究结果凸显了 N3 在医疗实践中进行个体评估的潜力,在医疗实践中,常模不仅是一个基准,还是一个动态工具,能适应错综复杂的个性化患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Judged by your neighbors: Brain structural normativity profiles for large and heterogeneous samples.

The detection of norm deviations is fundamental to clinical decision making and impacts our ability to diagnose and treat diseases effectively. Current normative modeling approaches rely on generic comparisons and quantify deviations in relation to the population average. However, generic models interpolate subtle nuances and risk the loss of critical information, thereby compromising effective personalization of health care strategies. To acknowledge the substantial heterogeneity among patients and support the paradigm shift of precision medicine, we introduce Nearest Neighbor Normativity (N 3 ), which is a strategy to refine normativity evaluations in diverse and heterogeneous clinical study populations. We address current methodological shortcomings by accommodating several equally normative population prototypes, comparing individuals from multiple perspectives and designing specifically tailored control groups. Applied to brain structure in 36,896 individuals, the N 3 framework provides empirical evidence for its utility and significantly outperforms traditional methods in the detection of pathological alterations. Our results underscore N 3 's potential for individual assessments in medical practice, where norm deviations are not merely a benchmark, but an important metric supporting the realization of personalized patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Biorepository and Integrative Genomics resource for inclusive genomics: insights from a diverse pediatric and admixed cohort. Distress is positively associated with induced secondary hyperalgesia in people with suppressed HIV. A Qualitative Study of People with Alzheimer's Disease in a Memory Clinic Considering Lecanemab Treatment. Distinct White Matter Fiber Density Patterns in Bipolar and Depressive Disorders: Insights from Fixel-Based Analysis. Assessment of MYC Gene and WNT Pathway Alterations in Early-Onset Colorectal Cancer Among Hispanic/Latino Patients Using Integrated Multi-Omics Approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1