三点相关函数的流模型及其与标准摄动理论的联系

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2025-01-16 DOI:10.1088/1475-7516/2025/01/075
A. Pugno, A. Eggemeier, C. Porciani and J. Kuruvilla
{"title":"三点相关函数的流模型及其与标准摄动理论的联系","authors":"A. Pugno, A. Eggemeier, C. Porciani and J. Kuruvilla","doi":"10.1088/1475-7516/2025/01/075","DOIUrl":null,"url":null,"abstract":"Redshift-space distortions (RSDs) present a significant challenge in building models for the three-point correlation function (3PCF). We compare two possible lines of attack: the streaming model and standard perturbation theory (SPT). The two approaches differ in their treatment of the non-linear mapping from real to redshift space: SPT expands this mapping perturbatively, while the streaming model retains its non-linear form but relies on simplifying assumptions about the probability density function (PDF) of line-of-sight velocity differences between pairs or triplets of tracers. To assess the quality of the predictions and the validity of the assumptions of these models, we measure the monopole of the matter 3PCF and the first two moments of the pair- and triplewise velocity PDF from a suite of N-body simulations. We also evaluate the large-scale limit of the streaming model and determine under which conditions it aligns to SPT. On scales larger than 10 h-1 Mpc, we find that the streaming model for the 3PCF monopole is dominated by the first two velocity moments, making the exact shape of the PDF irrelevant. This model can match the accuracy of a Stage-IV galaxy survey, if the velocity moments are measured directly from the simulations. However, replacing the measurements with perturbative expressions to leading order generates large errors already on scales of 60–70 h-1 Mpc. This is the primary drawback of the streaming model. On the other hand, the SPT model for the 3PCF cannot account for the significant velocity dispersion that is present at all scales, and consequently provides predictions with limited accuracy. We demonstrate that this issue can be approximately addressed by isolating the large-scale limit of the dispersion, which leads to typical Fingers-of-God damping functions. Overall, the SPT model with a damping function provides the best compromise in terms of accuracy and computing time.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"77 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The streaming model for the three-point correlation function and its connection to standard perturbation theory\",\"authors\":\"A. Pugno, A. Eggemeier, C. Porciani and J. Kuruvilla\",\"doi\":\"10.1088/1475-7516/2025/01/075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Redshift-space distortions (RSDs) present a significant challenge in building models for the three-point correlation function (3PCF). We compare two possible lines of attack: the streaming model and standard perturbation theory (SPT). The two approaches differ in their treatment of the non-linear mapping from real to redshift space: SPT expands this mapping perturbatively, while the streaming model retains its non-linear form but relies on simplifying assumptions about the probability density function (PDF) of line-of-sight velocity differences between pairs or triplets of tracers. To assess the quality of the predictions and the validity of the assumptions of these models, we measure the monopole of the matter 3PCF and the first two moments of the pair- and triplewise velocity PDF from a suite of N-body simulations. We also evaluate the large-scale limit of the streaming model and determine under which conditions it aligns to SPT. On scales larger than 10 h-1 Mpc, we find that the streaming model for the 3PCF monopole is dominated by the first two velocity moments, making the exact shape of the PDF irrelevant. This model can match the accuracy of a Stage-IV galaxy survey, if the velocity moments are measured directly from the simulations. However, replacing the measurements with perturbative expressions to leading order generates large errors already on scales of 60–70 h-1 Mpc. This is the primary drawback of the streaming model. On the other hand, the SPT model for the 3PCF cannot account for the significant velocity dispersion that is present at all scales, and consequently provides predictions with limited accuracy. We demonstrate that this issue can be approximately addressed by isolating the large-scale limit of the dispersion, which leads to typical Fingers-of-God damping functions. Overall, the SPT model with a damping function provides the best compromise in terms of accuracy and computing time.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/01/075\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/075","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

红移空间失真(rsd)是建立三点相关函数(3PCF)模型的一个重大挑战。我们比较了两种可能的攻击路线:流模型和标准微扰理论(SPT)。这两种方法在处理从实空间到红移空间的非线性映射方面有所不同:SPT扰动地扩展了这种映射,而流模型保留了其非线性形式,但依赖于对示踪剂对或三组之间的视距速度差的概率密度函数(PDF)的简化假设。为了评估预测的质量和这些模型假设的有效性,我们测量了物质3PCF的单极子和一对和三向速度PDF的前两个矩,来自一套n体模拟。我们还评估了流模型的大规模限制,并确定在哪些条件下它与SPT对齐。在大于10 h-1 Mpc的尺度上,我们发现3PCF单极子的流模型由前两个速度矩主导,使得PDF的确切形状无关紧要。如果直接从模拟中测量速度矩,这个模型可以匹配第四阶段星系调查的精度。然而,在60-70 h-1 Mpc的尺度上,用微扰表达式替换测量结果会产生很大的误差。这是流模型的主要缺点。另一方面,3PCF的SPT模型不能解释在所有尺度上存在的显著速度色散,因此提供的预测精度有限。我们证明了这个问题可以通过隔离色散的大规模限制来近似解决,这导致了典型的上帝之指阻尼函数。总的来说,带有阻尼函数的SPT模型在精度和计算时间方面提供了最佳折衷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The streaming model for the three-point correlation function and its connection to standard perturbation theory
Redshift-space distortions (RSDs) present a significant challenge in building models for the three-point correlation function (3PCF). We compare two possible lines of attack: the streaming model and standard perturbation theory (SPT). The two approaches differ in their treatment of the non-linear mapping from real to redshift space: SPT expands this mapping perturbatively, while the streaming model retains its non-linear form but relies on simplifying assumptions about the probability density function (PDF) of line-of-sight velocity differences between pairs or triplets of tracers. To assess the quality of the predictions and the validity of the assumptions of these models, we measure the monopole of the matter 3PCF and the first two moments of the pair- and triplewise velocity PDF from a suite of N-body simulations. We also evaluate the large-scale limit of the streaming model and determine under which conditions it aligns to SPT. On scales larger than 10 h-1 Mpc, we find that the streaming model for the 3PCF monopole is dominated by the first two velocity moments, making the exact shape of the PDF irrelevant. This model can match the accuracy of a Stage-IV galaxy survey, if the velocity moments are measured directly from the simulations. However, replacing the measurements with perturbative expressions to leading order generates large errors already on scales of 60–70 h-1 Mpc. This is the primary drawback of the streaming model. On the other hand, the SPT model for the 3PCF cannot account for the significant velocity dispersion that is present at all scales, and consequently provides predictions with limited accuracy. We demonstrate that this issue can be approximately addressed by isolating the large-scale limit of the dispersion, which leads to typical Fingers-of-God damping functions. Overall, the SPT model with a damping function provides the best compromise in terms of accuracy and computing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
Spacetime surgery for black hole fireworks Distinct photon-ALP propagation modes Ultra slow-roll with a black hole ANNZ+: an enhanced photometric redshift estimation algorithm with applications on the PAU survey Hot Casimir wormholes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1