{"title":"即时超小电流可调异常霍尔效应","authors":"Li Yang, Hao Wu, Fei Guo, Gaojie Zhang, Wenfeng Zhang, Haixin Chang","doi":"10.1016/j.matt.2024.101940","DOIUrl":null,"url":null,"abstract":"Electrical control of the anomalous Hall effect (AHE) provides an important gateway to reveal and regulate topological properties of spins. However, direct, immediate electrical tuning of the AHE in materials has been elusive, unfeasible, and rarely reported. Here, we demonstrate direct, immediate, nonlinear, electric current regulation of the AHE in a single, novel, van der Waals, room-temperature, ferromagnetic, ultrathin, two-dimensional (2D) crystal for intrinsic sensitivity of nodal electronic structures induced by 2D spin-orbit coupling (SOC) in a 2D quantum limit with an ultrasmall current (∼10<sup>2</sup> A cm<sup>−2</sup>). The multivalued electrical tuning of anomalous Hall resistance (R<sub>AHE</sub>) (<span><math><mrow is=\"true\"><mfrac is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">R</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">A</mi><mi is=\"true\" mathvariant=\"bold-italic\">H</mi><mi is=\"true\" mathvariant=\"bold-italic\">E</mi></mrow></msub><mn is=\"true\" mathvariant=\"bold\">1</mn></mrow><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">R</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">A</mi><mi is=\"true\" mathvariant=\"bold-italic\">H</mi><mi is=\"true\" mathvariant=\"bold-italic\">E</mi></mrow></msub><mn is=\"true\" mathvariant=\"bold\">2</mn></mrow></mfrac><mo is=\"true\">∗</mo><mn is=\"true\" mathvariant=\"bold\">100</mn><mo is=\"true\">%</mo></mrow></math></span>) is up to 584% and remains 126% at room temperature. The squared correlation between R<sub>AHE</sub> and longitudinal resistance indicates an SOC-dominated Berry curvature-induced AHE. This immediate-current AHE with distinct dependence on the dimension, crystal layer, and electronic topology provides unique quantum platforms for probing the essence of the dimension and for low-power spintronics and brain-like quantum devices.","PeriodicalId":388,"journal":{"name":"Matter","volume":"120 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immediate ultrasmall current-tunable anomalous Hall effect\",\"authors\":\"Li Yang, Hao Wu, Fei Guo, Gaojie Zhang, Wenfeng Zhang, Haixin Chang\",\"doi\":\"10.1016/j.matt.2024.101940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical control of the anomalous Hall effect (AHE) provides an important gateway to reveal and regulate topological properties of spins. However, direct, immediate electrical tuning of the AHE in materials has been elusive, unfeasible, and rarely reported. Here, we demonstrate direct, immediate, nonlinear, electric current regulation of the AHE in a single, novel, van der Waals, room-temperature, ferromagnetic, ultrathin, two-dimensional (2D) crystal for intrinsic sensitivity of nodal electronic structures induced by 2D spin-orbit coupling (SOC) in a 2D quantum limit with an ultrasmall current (∼10<sup>2</sup> A cm<sup>−2</sup>). The multivalued electrical tuning of anomalous Hall resistance (R<sub>AHE</sub>) (<span><math><mrow is=\\\"true\\\"><mfrac is=\\\"true\\\"><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">R</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">A</mi><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">H</mi><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">E</mi></mrow></msub><mn is=\\\"true\\\" mathvariant=\\\"bold\\\">1</mn></mrow><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">R</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">A</mi><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">H</mi><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">E</mi></mrow></msub><mn is=\\\"true\\\" mathvariant=\\\"bold\\\">2</mn></mrow></mfrac><mo is=\\\"true\\\">∗</mo><mn is=\\\"true\\\" mathvariant=\\\"bold\\\">100</mn><mo is=\\\"true\\\">%</mo></mrow></math></span>) is up to 584% and remains 126% at room temperature. The squared correlation between R<sub>AHE</sub> and longitudinal resistance indicates an SOC-dominated Berry curvature-induced AHE. This immediate-current AHE with distinct dependence on the dimension, crystal layer, and electronic topology provides unique quantum platforms for probing the essence of the dimension and for low-power spintronics and brain-like quantum devices.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2024.101940\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.101940","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
异常霍尔效应(AHE)的电控制是揭示和调控自旋拓扑性质的重要途径。然而,材料中AHE的直接,即时电调谐一直是难以捉摸的,不可行的,很少报道。在这里,我们展示了AHE在一个单一的、新颖的、范德华的、室温的、铁磁的、超薄的二维(2D)晶体中直接的、即时的、非线性的电流调节,用于在二维量子极限下由二维自旋轨道耦合(SOC)引起的节点电子结构的固有灵敏度,具有超小电流(~ 102 a cm−2)。异常霍尔电阻(RAHE1RAHE2 * 100%)的多值电调谐高达584%,在室温下保持126%。RAHE与纵向电阻之间的平方相关性表明soc主导的Berry曲率诱导AHE。这种对维度、晶体层和电子拓扑具有明显依赖性的即时电流AHE为探索维度的本质、低功率自旋电子学和类脑量子器件提供了独特的量子平台。
Immediate ultrasmall current-tunable anomalous Hall effect
Electrical control of the anomalous Hall effect (AHE) provides an important gateway to reveal and regulate topological properties of spins. However, direct, immediate electrical tuning of the AHE in materials has been elusive, unfeasible, and rarely reported. Here, we demonstrate direct, immediate, nonlinear, electric current regulation of the AHE in a single, novel, van der Waals, room-temperature, ferromagnetic, ultrathin, two-dimensional (2D) crystal for intrinsic sensitivity of nodal electronic structures induced by 2D spin-orbit coupling (SOC) in a 2D quantum limit with an ultrasmall current (∼102 A cm−2). The multivalued electrical tuning of anomalous Hall resistance (RAHE) () is up to 584% and remains 126% at room temperature. The squared correlation between RAHE and longitudinal resistance indicates an SOC-dominated Berry curvature-induced AHE. This immediate-current AHE with distinct dependence on the dimension, crystal layer, and electronic topology provides unique quantum platforms for probing the essence of the dimension and for low-power spintronics and brain-like quantum devices.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.