即时超小电流可调异常霍尔效应

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2025-01-17 DOI:10.1016/j.matt.2024.101940
Li Yang, Hao Wu, Fei Guo, Gaojie Zhang, Wenfeng Zhang, Haixin Chang
{"title":"即时超小电流可调异常霍尔效应","authors":"Li Yang, Hao Wu, Fei Guo, Gaojie Zhang, Wenfeng Zhang, Haixin Chang","doi":"10.1016/j.matt.2024.101940","DOIUrl":null,"url":null,"abstract":"Electrical control of the anomalous Hall effect (AHE) provides an important gateway to reveal and regulate topological properties of spins. However, direct, immediate electrical tuning of the AHE in materials has been elusive, unfeasible, and rarely reported. Here, we demonstrate direct, immediate, nonlinear, electric current regulation of the AHE in a single, novel, van der Waals, room-temperature, ferromagnetic, ultrathin, two-dimensional (2D) crystal for intrinsic sensitivity of nodal electronic structures induced by 2D spin-orbit coupling (SOC) in a 2D quantum limit with an ultrasmall current (∼10<sup>2</sup> A cm<sup>−2</sup>). The multivalued electrical tuning of anomalous Hall resistance (R<sub>AHE</sub>) (<span><math><mrow is=\"true\"><mfrac is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">R</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">A</mi><mi is=\"true\" mathvariant=\"bold-italic\">H</mi><mi is=\"true\" mathvariant=\"bold-italic\">E</mi></mrow></msub><mn is=\"true\" mathvariant=\"bold\">1</mn></mrow><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">R</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">A</mi><mi is=\"true\" mathvariant=\"bold-italic\">H</mi><mi is=\"true\" mathvariant=\"bold-italic\">E</mi></mrow></msub><mn is=\"true\" mathvariant=\"bold\">2</mn></mrow></mfrac><mo is=\"true\">∗</mo><mn is=\"true\" mathvariant=\"bold\">100</mn><mo is=\"true\">%</mo></mrow></math></span>) is up to 584% and remains 126% at room temperature. The squared correlation between R<sub>AHE</sub> and longitudinal resistance indicates an SOC-dominated Berry curvature-induced AHE. This immediate-current AHE with distinct dependence on the dimension, crystal layer, and electronic topology provides unique quantum platforms for probing the essence of the dimension and for low-power spintronics and brain-like quantum devices.","PeriodicalId":388,"journal":{"name":"Matter","volume":"120 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immediate ultrasmall current-tunable anomalous Hall effect\",\"authors\":\"Li Yang, Hao Wu, Fei Guo, Gaojie Zhang, Wenfeng Zhang, Haixin Chang\",\"doi\":\"10.1016/j.matt.2024.101940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical control of the anomalous Hall effect (AHE) provides an important gateway to reveal and regulate topological properties of spins. However, direct, immediate electrical tuning of the AHE in materials has been elusive, unfeasible, and rarely reported. Here, we demonstrate direct, immediate, nonlinear, electric current regulation of the AHE in a single, novel, van der Waals, room-temperature, ferromagnetic, ultrathin, two-dimensional (2D) crystal for intrinsic sensitivity of nodal electronic structures induced by 2D spin-orbit coupling (SOC) in a 2D quantum limit with an ultrasmall current (∼10<sup>2</sup> A cm<sup>−2</sup>). The multivalued electrical tuning of anomalous Hall resistance (R<sub>AHE</sub>) (<span><math><mrow is=\\\"true\\\"><mfrac is=\\\"true\\\"><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">R</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">A</mi><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">H</mi><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">E</mi></mrow></msub><mn is=\\\"true\\\" mathvariant=\\\"bold\\\">1</mn></mrow><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">R</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">A</mi><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">H</mi><mi is=\\\"true\\\" mathvariant=\\\"bold-italic\\\">E</mi></mrow></msub><mn is=\\\"true\\\" mathvariant=\\\"bold\\\">2</mn></mrow></mfrac><mo is=\\\"true\\\">∗</mo><mn is=\\\"true\\\" mathvariant=\\\"bold\\\">100</mn><mo is=\\\"true\\\">%</mo></mrow></math></span>) is up to 584% and remains 126% at room temperature. The squared correlation between R<sub>AHE</sub> and longitudinal resistance indicates an SOC-dominated Berry curvature-induced AHE. This immediate-current AHE with distinct dependence on the dimension, crystal layer, and electronic topology provides unique quantum platforms for probing the essence of the dimension and for low-power spintronics and brain-like quantum devices.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2024.101940\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.101940","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

异常霍尔效应(AHE)的电控制是揭示和调控自旋拓扑性质的重要途径。然而,材料中AHE的直接,即时电调谐一直是难以捉摸的,不可行的,很少报道。在这里,我们展示了AHE在一个单一的、新颖的、范德华的、室温的、铁磁的、超薄的二维(2D)晶体中直接的、即时的、非线性的电流调节,用于在二维量子极限下由二维自旋轨道耦合(SOC)引起的节点电子结构的固有灵敏度,具有超小电流(~ 102 a cm−2)。异常霍尔电阻(RAHE1RAHE2 * 100%)的多值电调谐高达584%,在室温下保持126%。RAHE与纵向电阻之间的平方相关性表明soc主导的Berry曲率诱导AHE。这种对维度、晶体层和电子拓扑具有明显依赖性的即时电流AHE为探索维度的本质、低功率自旋电子学和类脑量子器件提供了独特的量子平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Immediate ultrasmall current-tunable anomalous Hall effect
Electrical control of the anomalous Hall effect (AHE) provides an important gateway to reveal and regulate topological properties of spins. However, direct, immediate electrical tuning of the AHE in materials has been elusive, unfeasible, and rarely reported. Here, we demonstrate direct, immediate, nonlinear, electric current regulation of the AHE in a single, novel, van der Waals, room-temperature, ferromagnetic, ultrathin, two-dimensional (2D) crystal for intrinsic sensitivity of nodal electronic structures induced by 2D spin-orbit coupling (SOC) in a 2D quantum limit with an ultrasmall current (∼102 A cm−2). The multivalued electrical tuning of anomalous Hall resistance (RAHE) (RAHE1RAHE2100%) is up to 584% and remains 126% at room temperature. The squared correlation between RAHE and longitudinal resistance indicates an SOC-dominated Berry curvature-induced AHE. This immediate-current AHE with distinct dependence on the dimension, crystal layer, and electronic topology provides unique quantum platforms for probing the essence of the dimension and for low-power spintronics and brain-like quantum devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Guiding the rational design of biocompatible metal-organic frameworks for drug delivery Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics Ultratransparent, stretchable, and durable electromagnetic wave absorbers Stretchable, breathable, wearable batteries using a holey design Controlling stack pressure inhomogeneity in anode-free solid-state batteries using elastomeric interlayers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1