一种新型的三层复合固体电解质,使高面积容量的全固态锂电池具有长寿命

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-01-18 DOI:10.1016/j.jmst.2024.11.070
Yangming Hu, Liansheng Li, Xiangxiang Fu, Wanting Li, Yuanfu Deng
{"title":"一种新型的三层复合固体电解质,使高面积容量的全固态锂电池具有长寿命","authors":"Yangming Hu, Liansheng Li, Xiangxiang Fu, Wanting Li, Yuanfu Deng","doi":"10.1016/j.jmst.2024.11.070","DOIUrl":null,"url":null,"abstract":"The interface instability between composite solid electrolytes (CSEs) and lithium anode significantly shortens the lifespan of all-solid-state lithium batteries (ASSLBs) with high areal capacity. In this work, a CSE featuring a trilayer architecture is developed by incorporating a thin polyethylene (PE) separator into a blending polymer matrix of poly(ethylene oxide) and poly(vinylidene fluoride) (PEO-PVDF) through a hot pressing technique. This structural design provides complementary functions: the flexible outer layers confine lithium deposition within a restricted area, while the robust interlayer prevents lithium dendrite penetration. Additionally, the incorporation of LiNO<sub>3</sub> significantly enhances the stability of the CSE/Li interface by gradually forming a Li<sub>3</sub>N-rich interfacial film, which promotes uniform lithium deposition. Consequently, the assembled Li||Li symmetrical cell demonstrates stable cycling for over 6000 h at a current density of 0.2 mA cm<sup>–2</sup> with an areal capacity of 1.2 mAh cm<sup>–2</sup>. More attractively, ASSLBs constructed with the designed CSEs, high mass loading LFP/NCM811 (LFP: LiFePO<sub>4</sub>; NCM811: LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>) cathodes (≥ 12 mg cm<sup>–2</sup>), and lithium metal anodes deliver superior cycling performance without short-circuiting at current densities of 0.3/0.2 mA cm<sup>–2</sup>, respectively. This work offers critical insights for the design of high-performance ASSLBs with improved durability at high areal capacities.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"7 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel designed trilayer composite solid electrolyte enabling high-areal-capacity all-solid-state lithium batteries with long lifespan\",\"authors\":\"Yangming Hu, Liansheng Li, Xiangxiang Fu, Wanting Li, Yuanfu Deng\",\"doi\":\"10.1016/j.jmst.2024.11.070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interface instability between composite solid electrolytes (CSEs) and lithium anode significantly shortens the lifespan of all-solid-state lithium batteries (ASSLBs) with high areal capacity. In this work, a CSE featuring a trilayer architecture is developed by incorporating a thin polyethylene (PE) separator into a blending polymer matrix of poly(ethylene oxide) and poly(vinylidene fluoride) (PEO-PVDF) through a hot pressing technique. This structural design provides complementary functions: the flexible outer layers confine lithium deposition within a restricted area, while the robust interlayer prevents lithium dendrite penetration. Additionally, the incorporation of LiNO<sub>3</sub> significantly enhances the stability of the CSE/Li interface by gradually forming a Li<sub>3</sub>N-rich interfacial film, which promotes uniform lithium deposition. Consequently, the assembled Li||Li symmetrical cell demonstrates stable cycling for over 6000 h at a current density of 0.2 mA cm<sup>–2</sup> with an areal capacity of 1.2 mAh cm<sup>–2</sup>. More attractively, ASSLBs constructed with the designed CSEs, high mass loading LFP/NCM811 (LFP: LiFePO<sub>4</sub>; NCM811: LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>) cathodes (≥ 12 mg cm<sup>–2</sup>), and lithium metal anodes deliver superior cycling performance without short-circuiting at current densities of 0.3/0.2 mA cm<sup>–2</sup>, respectively. This work offers critical insights for the design of high-performance ASSLBs with improved durability at high areal capacities.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.11.070\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.070","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

复合固体电解质(CSE)与锂负极之间的界面不稳定性大大缩短了高容量全固态锂电池(ASSLB)的使用寿命。在这项研究中,通过热压技术将薄聚乙烯(PE)隔膜加入到聚环氧乙烷和聚偏氟乙烯(PEO-PVDF)的混合聚合物基体中,开发出了一种具有三层结构的 CSE。这种结构设计具有互补功能:柔性外层将锂沉积限制在一个有限的区域内,而坚固的中间层则防止锂枝晶渗透。此外,LiNO3 的加入通过逐渐形成富含 Li3N 的界面膜,显著增强了 CSE/Li 界面的稳定性,从而促进了锂的均匀沉积。因此,组装好的锂对称电池在 0.2 mA cm-2 的电流密度下可稳定循环 6000 小时以上,平均容量为 1.2 mAh cm-2。更吸引人的是,使用所设计的 CSE、高负载 LFP/NCM811(LFP:LiFePO4;NCM811:LiNi0.8Co0.1Mn0.1O2)正极(≥ 12 mg cm-2)和锂金属阳极构建的 ASSLB 在电流密度分别为 0.3/0.2 mA cm-2 时具有优异的无短路循环性能。这项研究为设计高性能 ASSLB 提供了重要的启示,可提高高电容下的耐用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel designed trilayer composite solid electrolyte enabling high-areal-capacity all-solid-state lithium batteries with long lifespan
The interface instability between composite solid electrolytes (CSEs) and lithium anode significantly shortens the lifespan of all-solid-state lithium batteries (ASSLBs) with high areal capacity. In this work, a CSE featuring a trilayer architecture is developed by incorporating a thin polyethylene (PE) separator into a blending polymer matrix of poly(ethylene oxide) and poly(vinylidene fluoride) (PEO-PVDF) through a hot pressing technique. This structural design provides complementary functions: the flexible outer layers confine lithium deposition within a restricted area, while the robust interlayer prevents lithium dendrite penetration. Additionally, the incorporation of LiNO3 significantly enhances the stability of the CSE/Li interface by gradually forming a Li3N-rich interfacial film, which promotes uniform lithium deposition. Consequently, the assembled Li||Li symmetrical cell demonstrates stable cycling for over 6000 h at a current density of 0.2 mA cm–2 with an areal capacity of 1.2 mAh cm–2. More attractively, ASSLBs constructed with the designed CSEs, high mass loading LFP/NCM811 (LFP: LiFePO4; NCM811: LiNi0.8Co0.1Mn0.1O2) cathodes (≥ 12 mg cm–2), and lithium metal anodes deliver superior cycling performance without short-circuiting at current densities of 0.3/0.2 mA cm–2, respectively. This work offers critical insights for the design of high-performance ASSLBs with improved durability at high areal capacities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1