具有稀土增强晶格氧参与的超高比表面积介孔钙钛矿氧化物纳米片具有优异的水氧化性能

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-01-17 DOI:10.1016/j.jmst.2024.11.069
Biao Wang, Xiangrui Wu, Suyue Jia, Jiayi Tang, Hao Wu, Xuan Wang, Shengyong Gao, Hao Li, Haijiao Lu, Gengtao Fu, Xiangkang Meng, Shaochun Tang
{"title":"具有稀土增强晶格氧参与的超高比表面积介孔钙钛矿氧化物纳米片具有优异的水氧化性能","authors":"Biao Wang, Xiangrui Wu, Suyue Jia, Jiayi Tang, Hao Wu, Xuan Wang, Shengyong Gao, Hao Li, Haijiao Lu, Gengtao Fu, Xiangkang Meng, Shaochun Tang","doi":"10.1016/j.jmst.2024.11.069","DOIUrl":null,"url":null,"abstract":"Perovskite oxides (ABO<sub>3</sub>) are thought to be promising electrocatalysts for oxygen evolution reaction (OER), but their specific surface area (SSA) is too low (usually &lt; 10 m<sup>2</sup> g<sup>-1</sup>). Developing advanced ABO<sub>3</sub> electrocatalysts with high SSA and optimized structure is of great significance but remains a tremendous challenge. Herein, we propose a general strategy for fabrication of mesoporous perovskite oxide nanosheets (MPONs) with controllable atomic doping via self-sacrificial template-induced nanostructure modulation. A variety of MPONs including LaFeO<sub>3</sub>, A-site-doped LaFeO<sub>3</sub> (A-LaFeO<sub>3</sub>, where A is Pr, Nd, Sm, Eu, or Gd) and B-site-doped LaFeO<sub>3</sub> (B-LaFeO<sub>3</sub>, where B is Mn, Co, Ni, Cu, or Zn) have been achieved. Interestingly, it is discovered that the catalytic activities of A-LaFeO<sub>3</sub> MPONs as OER catalysts are overall higher than those of B-LaFeO<sub>3</sub> ones. Especially, the screened Eu-LaFeO<sub>3</sub> MPONs only require a low overpotential of 267 mV at 10 mA cm<sup>-2</sup>, outperforming most reported perovskite oxides. The superior catalytic activity of Eu-LaFeO<sub>3</sub> MPONs is attributed to their favorable porous structure, which increases the density of active sites, and enhanced lattice oxygen participation, which improves the intrinsic activity. This study provides guidance for the design and controlled synthesis of advanced rare-earth-doped MPONs with ultrahigh SSA for enhanced electrocatalysis.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"14 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh specific surface area mesoporous perovskite oxide nanosheets with rare-earth-enhanced lattice oxygen participation for superior water oxidation\",\"authors\":\"Biao Wang, Xiangrui Wu, Suyue Jia, Jiayi Tang, Hao Wu, Xuan Wang, Shengyong Gao, Hao Li, Haijiao Lu, Gengtao Fu, Xiangkang Meng, Shaochun Tang\",\"doi\":\"10.1016/j.jmst.2024.11.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite oxides (ABO<sub>3</sub>) are thought to be promising electrocatalysts for oxygen evolution reaction (OER), but their specific surface area (SSA) is too low (usually &lt; 10 m<sup>2</sup> g<sup>-1</sup>). Developing advanced ABO<sub>3</sub> electrocatalysts with high SSA and optimized structure is of great significance but remains a tremendous challenge. Herein, we propose a general strategy for fabrication of mesoporous perovskite oxide nanosheets (MPONs) with controllable atomic doping via self-sacrificial template-induced nanostructure modulation. A variety of MPONs including LaFeO<sub>3</sub>, A-site-doped LaFeO<sub>3</sub> (A-LaFeO<sub>3</sub>, where A is Pr, Nd, Sm, Eu, or Gd) and B-site-doped LaFeO<sub>3</sub> (B-LaFeO<sub>3</sub>, where B is Mn, Co, Ni, Cu, or Zn) have been achieved. Interestingly, it is discovered that the catalytic activities of A-LaFeO<sub>3</sub> MPONs as OER catalysts are overall higher than those of B-LaFeO<sub>3</sub> ones. Especially, the screened Eu-LaFeO<sub>3</sub> MPONs only require a low overpotential of 267 mV at 10 mA cm<sup>-2</sup>, outperforming most reported perovskite oxides. The superior catalytic activity of Eu-LaFeO<sub>3</sub> MPONs is attributed to their favorable porous structure, which increases the density of active sites, and enhanced lattice oxygen participation, which improves the intrinsic activity. This study provides guidance for the design and controlled synthesis of advanced rare-earth-doped MPONs with ultrahigh SSA for enhanced electrocatalysis.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.11.069\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.069","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿氧化物(ABO3)被认为是很有前途的析氧反应(OER)电催化剂,但它们的比表面积(SSA)太低(通常为<;10m2 g-1)。开发具有高SSA和优化结构的先进ABO3电催化剂具有重要意义,但仍面临巨大挑战。在此,我们提出了一种通过自我牺牲模板诱导纳米结构调制制备具有可控原子掺杂的介孔钙钛矿氧化物纳米片(mpon)的一般策略。已经制备了多种mpon,包括LaFeO3、A位掺杂LaFeO3 (A-LaFeO3,其中A为Pr、Nd、Sm、Eu或Gd)和B位掺杂LaFeO3 (B-LaFeO3,其中B为Mn、Co、Ni、Cu或Zn)。有趣的是,我们发现A-LaFeO3 MPONs作为OER催化剂的催化活性总体上高于B-LaFeO3 MPONs。特别是,筛选的Eu-LaFeO3 mpon在10 mA cm-2下的过电位仅为267 mV,优于大多数报道的钙钛矿氧化物。Eu-LaFeO3 MPONs优异的催化活性归因于其良好的多孔结构,增加了活性位点的密度,增强了晶格氧参与,从而提高了其固有活性。该研究为设计和控制合成具有超高SSA的先进稀土掺杂mpon用于增强电催化提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrahigh specific surface area mesoporous perovskite oxide nanosheets with rare-earth-enhanced lattice oxygen participation for superior water oxidation
Perovskite oxides (ABO3) are thought to be promising electrocatalysts for oxygen evolution reaction (OER), but their specific surface area (SSA) is too low (usually < 10 m2 g-1). Developing advanced ABO3 electrocatalysts with high SSA and optimized structure is of great significance but remains a tremendous challenge. Herein, we propose a general strategy for fabrication of mesoporous perovskite oxide nanosheets (MPONs) with controllable atomic doping via self-sacrificial template-induced nanostructure modulation. A variety of MPONs including LaFeO3, A-site-doped LaFeO3 (A-LaFeO3, where A is Pr, Nd, Sm, Eu, or Gd) and B-site-doped LaFeO3 (B-LaFeO3, where B is Mn, Co, Ni, Cu, or Zn) have been achieved. Interestingly, it is discovered that the catalytic activities of A-LaFeO3 MPONs as OER catalysts are overall higher than those of B-LaFeO3 ones. Especially, the screened Eu-LaFeO3 MPONs only require a low overpotential of 267 mV at 10 mA cm-2, outperforming most reported perovskite oxides. The superior catalytic activity of Eu-LaFeO3 MPONs is attributed to their favorable porous structure, which increases the density of active sites, and enhanced lattice oxygen participation, which improves the intrinsic activity. This study provides guidance for the design and controlled synthesis of advanced rare-earth-doped MPONs with ultrahigh SSA for enhanced electrocatalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1