土壤有机质积累的解锁机制:碳利用效率和微生物坏死群是关键

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2025-01-17 DOI:10.1111/gcb.70033
Yang Yang, Anna Gunina, Huan Cheng, Liangxu Liu, Baorong Wang, Yanxing Dou, Yunqiang Wang, Chao Liang, Shaoshan An, Scott X. Chang
{"title":"土壤有机质积累的解锁机制:碳利用效率和微生物坏死群是关键","authors":"Yang Yang,&nbsp;Anna Gunina,&nbsp;Huan Cheng,&nbsp;Liangxu Liu,&nbsp;Baorong Wang,&nbsp;Yanxing Dou,&nbsp;Yunqiang Wang,&nbsp;Chao Liang,&nbsp;Shaoshan An,&nbsp;Scott X. Chang","doi":"10.1111/gcb.70033","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by <sup>18</sup>O-H<sub>2</sub>O approach). Soil sampling (0–10 and 10–20 cm depth) was conducted along a climatic transect of 900 km on the Loess Plateau, including cropland, grassland, shrubland, and forest ecosystems, to ensure the homogeneous soil parent material. We found the highest POC and MAOC accumulation occurred in zones of MAT between 5°C and 10°C or MAP between 300 and 500 mm. Microbial necromass C was more positively related to POC than MAOC (<i>p</i> &lt; 0.05), suggesting that microbial residues may improve POC pool more strongly compared to MAOC pool. Random forest and linear regression analyses showed that POC increased with fungal necromass C, whereas bacterial necromass C drove MAOC. Microbial CUE was coupled with MAOC (<i>p</i> &lt; 0.05) but decoupled with POC and SOC (<i>p</i> &gt; 0.05). The POC have faster turnover rate due to the lack of clay protection, which may lead to the rapid turnover of microbial necromass and thus their decoupling from the CUE. In this sense, the SOC accumulation is driven by microbial necromass, whereas CUE explains MAOC dynamics. Our findings highlight the insufficiency of relying solely on microbial carbon use efficiency (CUE) to predict bulk SOC storage. Instead, we propose that CUE and microbial necromass should be used together to explain SOC dynamics, each influencing distinct C pools.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Mechanisms for Soil Organic Matter Accumulation: Carbon Use Efficiency and Microbial Necromass as the Keys\",\"authors\":\"Yang Yang,&nbsp;Anna Gunina,&nbsp;Huan Cheng,&nbsp;Liangxu Liu,&nbsp;Baorong Wang,&nbsp;Yanxing Dou,&nbsp;Yunqiang Wang,&nbsp;Chao Liang,&nbsp;Shaoshan An,&nbsp;Scott X. Chang\",\"doi\":\"10.1111/gcb.70033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by <sup>18</sup>O-H<sub>2</sub>O approach). Soil sampling (0–10 and 10–20 cm depth) was conducted along a climatic transect of 900 km on the Loess Plateau, including cropland, grassland, shrubland, and forest ecosystems, to ensure the homogeneous soil parent material. We found the highest POC and MAOC accumulation occurred in zones of MAT between 5°C and 10°C or MAP between 300 and 500 mm. Microbial necromass C was more positively related to POC than MAOC (<i>p</i> &lt; 0.05), suggesting that microbial residues may improve POC pool more strongly compared to MAOC pool. Random forest and linear regression analyses showed that POC increased with fungal necromass C, whereas bacterial necromass C drove MAOC. Microbial CUE was coupled with MAOC (<i>p</i> &lt; 0.05) but decoupled with POC and SOC (<i>p</i> &gt; 0.05). The POC have faster turnover rate due to the lack of clay protection, which may lead to the rapid turnover of microbial necromass and thus their decoupling from the CUE. In this sense, the SOC accumulation is driven by microbial necromass, whereas CUE explains MAOC dynamics. Our findings highlight the insufficiency of relying solely on microbial carbon use efficiency (CUE) to predict bulk SOC storage. Instead, we propose that CUE and microbial necromass should be used together to explain SOC dynamics, each influencing distinct C pools.</p>\\n </div>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70033\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70033","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

土壤微生物将植物来源的碳转化为颗粒有机碳(POC)和矿物相关碳(MAOC)库。虽然微生物碳利用效率(CUE)在当前生物地球化学模型中被广泛认为是土壤有机碳(SOC)储量的关键预测因子,但大规模的经验证据有限。在这项研究中,我们提出并实验测试了POC和MAOC池形成的两个预测因素:微生物坏死块(使用氨基糖作为代理)和CUE(通过18O‐H2O方法)。为了保证土壤母质的均匀性,在黄土高原上沿900 km的气候样带进行了0-10和10-20 cm深度的土壤取样,包括农田、草地、灌丛和森林生态系统。我们发现最高的POC和MAOC积累发生在5°C和10°C之间的MAT区域或300和500 mm之间的MAP区域。微生物坏死团C与POC的正相关程度高于MAOC (p <;0.05),说明微生物残留对POC池的改善作用强于MAOC池。随机森林和线性回归分析表明,POC随着真菌坏死团C的增加而增加,而细菌坏死团C则驱动MAOC。微生物CUE与MAOC偶联(p <;0.05),但与POC和SOC解耦(p >;0.05)。POC由于缺乏粘土的保护,其更新速度更快,这可能导致微生物坏死团块的快速更新,从而使其与CUE脱钩。从这个意义上说,有机碳积累是由微生物坏死团块驱动的,而CUE解释了MAOC动态。我们的研究结果强调了仅仅依靠微生物碳利用效率(CUE)来预测大块有机碳储量的不足。相反,我们建议将CUE和微生物坏死团块一起用于解释有机碳动态,它们各自影响不同的碳池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking Mechanisms for Soil Organic Matter Accumulation: Carbon Use Efficiency and Microbial Necromass as the Keys

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by 18O-H2O approach). Soil sampling (0–10 and 10–20 cm depth) was conducted along a climatic transect of 900 km on the Loess Plateau, including cropland, grassland, shrubland, and forest ecosystems, to ensure the homogeneous soil parent material. We found the highest POC and MAOC accumulation occurred in zones of MAT between 5°C and 10°C or MAP between 300 and 500 mm. Microbial necromass C was more positively related to POC than MAOC (p < 0.05), suggesting that microbial residues may improve POC pool more strongly compared to MAOC pool. Random forest and linear regression analyses showed that POC increased with fungal necromass C, whereas bacterial necromass C drove MAOC. Microbial CUE was coupled with MAOC (p < 0.05) but decoupled with POC and SOC (p > 0.05). The POC have faster turnover rate due to the lack of clay protection, which may lead to the rapid turnover of microbial necromass and thus their decoupling from the CUE. In this sense, the SOC accumulation is driven by microbial necromass, whereas CUE explains MAOC dynamics. Our findings highlight the insufficiency of relying solely on microbial carbon use efficiency (CUE) to predict bulk SOC storage. Instead, we propose that CUE and microbial necromass should be used together to explain SOC dynamics, each influencing distinct C pools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Impact of Carbon and Nitrogen Assimilation in Sargassum fusiforme (Harvey) Setchell due to Marine Heatwave Under Global Warming Pressure on Global Forests: Implications of Rising Vegetable Oils Consumption Under the EAT-Lancet Diet Ecological Differentiation Among Nitrous Oxide Reducers Enhances Temperature Effects on Riverine N2O Emissions Potential Spatial Mismatches Between Marine Predators and Their Prey in the Southern Hemisphere in Response to Climate Change Continent-Wide Patterns of Climate and Mast Seeding Entrain Boreal Bird Irruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1