{"title":"地空合作网络的高能效分布式计算卸载算法","authors":"Yanling Shao, Hairui Xu, Liming Liu, Wenyong Dong, Pingping Shan, Junying Guo, Wenxuan Xu","doi":"10.1016/j.vehcom.2025.100875","DOIUrl":null,"url":null,"abstract":"Due to the shortage of energy resources and computational capability, unmanned aerial vehicles (UAVs) tend to fail to execute tasks with time-delay sensitive and complex demands like artificial intelligence (AI) enabled applications. Most offloading method literature in ground-air cooperative systems simply uses edge servers or remote cloud servers to provide computation resources and storage space. Unfortunately, their performance degrades since it is difficult to guarantee UAV's quality of experience (QoE) considering the long-distance transmission delay. To address this issue, this paper proposes a ground-air cooperative edge computing framework in which multiprocessing computation is implemented by the UAVs locally or offloads specific calculations to the edge server on unmanned ground vehicles (UGVs). The proposed framework consists of two innovative mechanisms: one is to consider a mobility-aware link prediction method and other indicators, including compute capacity and workload, to ensure a stable offloading environment, the another is to propose an energy-efficient distributed computation offloading algorithm (EDCOA) by modelling the computation offloading issue for UAVs as an analytical optimization problem. By offloading subtasks to multiple UGV nodes for multiprocessing, UAVs can leverage the computation resources of the surrounding edge network entities to enhance their computational capabilities. Extensive experiments and comparisons with state-of-the-art realtime offloading methods showed that the proposed framework outperforms other approaches by delivering better performance in reducing UAV energy consumption, ensuring successful task offloading rates and meeting latency requirements.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An energy-efficient distributed computation offloading algorithm for ground-air cooperative networks\",\"authors\":\"Yanling Shao, Hairui Xu, Liming Liu, Wenyong Dong, Pingping Shan, Junying Guo, Wenxuan Xu\",\"doi\":\"10.1016/j.vehcom.2025.100875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the shortage of energy resources and computational capability, unmanned aerial vehicles (UAVs) tend to fail to execute tasks with time-delay sensitive and complex demands like artificial intelligence (AI) enabled applications. Most offloading method literature in ground-air cooperative systems simply uses edge servers or remote cloud servers to provide computation resources and storage space. Unfortunately, their performance degrades since it is difficult to guarantee UAV's quality of experience (QoE) considering the long-distance transmission delay. To address this issue, this paper proposes a ground-air cooperative edge computing framework in which multiprocessing computation is implemented by the UAVs locally or offloads specific calculations to the edge server on unmanned ground vehicles (UGVs). The proposed framework consists of two innovative mechanisms: one is to consider a mobility-aware link prediction method and other indicators, including compute capacity and workload, to ensure a stable offloading environment, the another is to propose an energy-efficient distributed computation offloading algorithm (EDCOA) by modelling the computation offloading issue for UAVs as an analytical optimization problem. By offloading subtasks to multiple UGV nodes for multiprocessing, UAVs can leverage the computation resources of the surrounding edge network entities to enhance their computational capabilities. Extensive experiments and comparisons with state-of-the-art realtime offloading methods showed that the proposed framework outperforms other approaches by delivering better performance in reducing UAV energy consumption, ensuring successful task offloading rates and meeting latency requirements.\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.vehcom.2025.100875\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2025.100875","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
An energy-efficient distributed computation offloading algorithm for ground-air cooperative networks
Due to the shortage of energy resources and computational capability, unmanned aerial vehicles (UAVs) tend to fail to execute tasks with time-delay sensitive and complex demands like artificial intelligence (AI) enabled applications. Most offloading method literature in ground-air cooperative systems simply uses edge servers or remote cloud servers to provide computation resources and storage space. Unfortunately, their performance degrades since it is difficult to guarantee UAV's quality of experience (QoE) considering the long-distance transmission delay. To address this issue, this paper proposes a ground-air cooperative edge computing framework in which multiprocessing computation is implemented by the UAVs locally or offloads specific calculations to the edge server on unmanned ground vehicles (UGVs). The proposed framework consists of two innovative mechanisms: one is to consider a mobility-aware link prediction method and other indicators, including compute capacity and workload, to ensure a stable offloading environment, the another is to propose an energy-efficient distributed computation offloading algorithm (EDCOA) by modelling the computation offloading issue for UAVs as an analytical optimization problem. By offloading subtasks to multiple UGV nodes for multiprocessing, UAVs can leverage the computation resources of the surrounding edge network entities to enhance their computational capabilities. Extensive experiments and comparisons with state-of-the-art realtime offloading methods showed that the proposed framework outperforms other approaches by delivering better performance in reducing UAV energy consumption, ensuring successful task offloading rates and meeting latency requirements.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.