{"title":"火星大气中工作流体及翼型几何设计对飞行器气动性能影响的研究","authors":"Junli Wang, Zhi Deng, Yuhang Zhang, Chen Liu, Wenli Chen, Jian Wu","doi":"10.1016/j.actaastro.2025.01.039","DOIUrl":null,"url":null,"abstract":"Unlike the Earth environment, the Martian atmosphere is mainly composed of carbon dioxide, which is characterized by low temperature and low density, resulting significant effects on the aerodynamic characteristics of air vehicles than those observed at the earth's atmosphere. In this study the effects of working fluids and the geometric designs of airfoils on the aerodynamic performance of 3D wing operating under Martian atmospheric conditions is performed, employing the experimental and numerical approaches. In addition, considering the operating environment of MARS, the effects of Reynolds and Mach numbers have also been studied at a larger scale. The results show that the working fluid does not significantly affect the aerodynamic performance of the wing, which is observed greatly sensitive to the variations in the flow Reynolds numbers, having lesser dependency on the Mach number. And the geometric design of airfoils is observed to greatly influence the wing aerodynamics operating at Martian conditions. Additionally, the numerical results present detailed insights on the stall onset for each operating conditions accompanied by the transformation of small-size high-frequency vortex shedding to large-size low-frequency vortex shedding.","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"79 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies on the effect of working fluid and the geometric design of airfoils on the aerodynamic performance of air vehicles operating in Martian atmosphere\",\"authors\":\"Junli Wang, Zhi Deng, Yuhang Zhang, Chen Liu, Wenli Chen, Jian Wu\",\"doi\":\"10.1016/j.actaastro.2025.01.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike the Earth environment, the Martian atmosphere is mainly composed of carbon dioxide, which is characterized by low temperature and low density, resulting significant effects on the aerodynamic characteristics of air vehicles than those observed at the earth's atmosphere. In this study the effects of working fluids and the geometric designs of airfoils on the aerodynamic performance of 3D wing operating under Martian atmospheric conditions is performed, employing the experimental and numerical approaches. In addition, considering the operating environment of MARS, the effects of Reynolds and Mach numbers have also been studied at a larger scale. The results show that the working fluid does not significantly affect the aerodynamic performance of the wing, which is observed greatly sensitive to the variations in the flow Reynolds numbers, having lesser dependency on the Mach number. And the geometric design of airfoils is observed to greatly influence the wing aerodynamics operating at Martian conditions. Additionally, the numerical results present detailed insights on the stall onset for each operating conditions accompanied by the transformation of small-size high-frequency vortex shedding to large-size low-frequency vortex shedding.\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actaastro.2025.01.039\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.actaastro.2025.01.039","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Studies on the effect of working fluid and the geometric design of airfoils on the aerodynamic performance of air vehicles operating in Martian atmosphere
Unlike the Earth environment, the Martian atmosphere is mainly composed of carbon dioxide, which is characterized by low temperature and low density, resulting significant effects on the aerodynamic characteristics of air vehicles than those observed at the earth's atmosphere. In this study the effects of working fluids and the geometric designs of airfoils on the aerodynamic performance of 3D wing operating under Martian atmospheric conditions is performed, employing the experimental and numerical approaches. In addition, considering the operating environment of MARS, the effects of Reynolds and Mach numbers have also been studied at a larger scale. The results show that the working fluid does not significantly affect the aerodynamic performance of the wing, which is observed greatly sensitive to the variations in the flow Reynolds numbers, having lesser dependency on the Mach number. And the geometric design of airfoils is observed to greatly influence the wing aerodynamics operating at Martian conditions. Additionally, the numerical results present detailed insights on the stall onset for each operating conditions accompanied by the transformation of small-size high-frequency vortex shedding to large-size low-frequency vortex shedding.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.