{"title":"学习全息视界","authors":"Vishnu Jejjala, Sukrut Mondkar, Ayan Mukhopadhyay, Rishi Raj","doi":"10.1103/physrevd.111.026016","DOIUrl":null,"url":null,"abstract":"We apply machine learning to understand fundamental aspects of holographic duality, specifically the entropies obtained from the apparent and event horizon areas. We show that simple features of only the time series of the pressure anisotropy, namely the values and half-widths of the maxima and minima, the times these are attained, and the times of the first zeroes can predict the areas of the apparent and event horizons in the dual bulk geometry at all times with a fixed maximum length (10) of the input vector. We also argue that the entropy functions are the measures of information that need to be extracted from simple one-point functions to reconstruct specific aspects of correlation functions of the dual state with the best possible approximations. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"32 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning holographic horizons\",\"authors\":\"Vishnu Jejjala, Sukrut Mondkar, Ayan Mukhopadhyay, Rishi Raj\",\"doi\":\"10.1103/physrevd.111.026016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply machine learning to understand fundamental aspects of holographic duality, specifically the entropies obtained from the apparent and event horizon areas. We show that simple features of only the time series of the pressure anisotropy, namely the values and half-widths of the maxima and minima, the times these are attained, and the times of the first zeroes can predict the areas of the apparent and event horizons in the dual bulk geometry at all times with a fixed maximum length (10) of the input vector. We also argue that the entropy functions are the measures of information that need to be extracted from simple one-point functions to reconstruct specific aspects of correlation functions of the dual state with the best possible approximations. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.026016\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.026016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
We apply machine learning to understand fundamental aspects of holographic duality, specifically the entropies obtained from the apparent and event horizon areas. We show that simple features of only the time series of the pressure anisotropy, namely the values and half-widths of the maxima and minima, the times these are attained, and the times of the first zeroes can predict the areas of the apparent and event horizons in the dual bulk geometry at all times with a fixed maximum length (10) of the input vector. We also argue that the entropy functions are the measures of information that need to be extracted from simple one-point functions to reconstruct specific aspects of correlation functions of the dual state with the best possible approximations. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.