{"title":"柱状到等轴组织转变对激光粉末床熔合高强铝合金疲劳性能的影响","authors":"Jin'e Sun, Punit Kumar, Pei Wang, Upadrasta Ramamurty, Xuanhui Qu, Baicheng Zhang","doi":"10.1016/j.jmst.2024.12.026","DOIUrl":null,"url":null,"abstract":"Aluminum alloys that are additively manufactured using the laser powder bed fusion (LPBF) suffer from relatively poor high cycle fatigue (HCF) resistance. In an effort to alleviate this, a high-strength Al alloy, Al-Mn-Mg-Sc-Zr, with columnar, equiaxed, and bi-modal microstructures was produced by varying the scanning velocity and the substrate temperature during the LPBF process. The tensile strength of LPBF Al-Mn-Mg-Sc-Zr alloy is 475 ± 5 – 516 ± 6 MPa with favorable elongation of approximately 11 %, higher than that of most of the other Al alloys, including conventional high-strength rolled/ECAP Al alloys and AM Al-Mg-Sc-Zr alloys. Specimens with bimodal microstructure and specimens with fully equiaxed microstructure both show a fatigue strength of 230 MPa (at 10<sup>7</sup> loading cycles), which is the highest among those reported for the LPBF Al alloys. The deformation synergy in the bimodal microstructure also improves the fatigue resistance in the strain-controlled low cycle fatigue (LCF) regime. The equiaxed microstructure restricts the to-and-fro dislocation motion during cyclic loading, which, in turn, minimizes the strain localization. At the later stages of strain accumulation, microcracks form at the grain boundaries, limiting the further improvement of the alloy's fatigue strength. This study demonstrates microstructural tailoring through AM enables improvement of the fatigue resistance of aluminum alloys.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"105 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of columnar-to-equiaxed microstructural transition on the fatigue performance of a laser powder bed fused high-strength Al alloy\",\"authors\":\"Jin'e Sun, Punit Kumar, Pei Wang, Upadrasta Ramamurty, Xuanhui Qu, Baicheng Zhang\",\"doi\":\"10.1016/j.jmst.2024.12.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminum alloys that are additively manufactured using the laser powder bed fusion (LPBF) suffer from relatively poor high cycle fatigue (HCF) resistance. In an effort to alleviate this, a high-strength Al alloy, Al-Mn-Mg-Sc-Zr, with columnar, equiaxed, and bi-modal microstructures was produced by varying the scanning velocity and the substrate temperature during the LPBF process. The tensile strength of LPBF Al-Mn-Mg-Sc-Zr alloy is 475 ± 5 – 516 ± 6 MPa with favorable elongation of approximately 11 %, higher than that of most of the other Al alloys, including conventional high-strength rolled/ECAP Al alloys and AM Al-Mg-Sc-Zr alloys. Specimens with bimodal microstructure and specimens with fully equiaxed microstructure both show a fatigue strength of 230 MPa (at 10<sup>7</sup> loading cycles), which is the highest among those reported for the LPBF Al alloys. The deformation synergy in the bimodal microstructure also improves the fatigue resistance in the strain-controlled low cycle fatigue (LCF) regime. The equiaxed microstructure restricts the to-and-fro dislocation motion during cyclic loading, which, in turn, minimizes the strain localization. At the later stages of strain accumulation, microcracks form at the grain boundaries, limiting the further improvement of the alloy's fatigue strength. This study demonstrates microstructural tailoring through AM enables improvement of the fatigue resistance of aluminum alloys.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.12.026\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.026","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of columnar-to-equiaxed microstructural transition on the fatigue performance of a laser powder bed fused high-strength Al alloy
Aluminum alloys that are additively manufactured using the laser powder bed fusion (LPBF) suffer from relatively poor high cycle fatigue (HCF) resistance. In an effort to alleviate this, a high-strength Al alloy, Al-Mn-Mg-Sc-Zr, with columnar, equiaxed, and bi-modal microstructures was produced by varying the scanning velocity and the substrate temperature during the LPBF process. The tensile strength of LPBF Al-Mn-Mg-Sc-Zr alloy is 475 ± 5 – 516 ± 6 MPa with favorable elongation of approximately 11 %, higher than that of most of the other Al alloys, including conventional high-strength rolled/ECAP Al alloys and AM Al-Mg-Sc-Zr alloys. Specimens with bimodal microstructure and specimens with fully equiaxed microstructure both show a fatigue strength of 230 MPa (at 107 loading cycles), which is the highest among those reported for the LPBF Al alloys. The deformation synergy in the bimodal microstructure also improves the fatigue resistance in the strain-controlled low cycle fatigue (LCF) regime. The equiaxed microstructure restricts the to-and-fro dislocation motion during cyclic loading, which, in turn, minimizes the strain localization. At the later stages of strain accumulation, microcracks form at the grain boundaries, limiting the further improvement of the alloy's fatigue strength. This study demonstrates microstructural tailoring through AM enables improvement of the fatigue resistance of aluminum alloys.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.