{"title":"通过电感耦合互连实现光子集成电路和电子集成电路的非接触集成","authors":"Tongchuan Ma;Liyiming Yang;Yanlu Li;Yuan Du","doi":"10.1109/TCPMT.2024.3511042","DOIUrl":null,"url":null,"abstract":"This letter presents an innovative noncontact packaging technique for photonic integrated circuits (PICs) and electronic integrated circuits (EICs) through inductively coupled interconnects. The primary aim of this approach is to enhance thermal isolation between the heat-generating electrical logic die and the thermally sensitive optical interferometer die. The feasibility of this contactless transceiver, which fulfills information transmission from the laser Doppler vibrometry (LDV) to the EIC, is substantiated via electromagnetic simulations. Furthermore, thermal simulations conducted by COMSOL prove that this packaging configuration could potentially reduce the temperature of PICs by up to <inline-formula> <tex-math>$4.6~^{\\circ }$ </tex-math></inline-formula>C when compared to the conventional 3-D stack packaging, underlining its potential for improved thermal performance.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 1","pages":"232-234"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncontact Integration of Photonic IC and Electronic IC via Inductively Coupled Interconnects\",\"authors\":\"Tongchuan Ma;Liyiming Yang;Yanlu Li;Yuan Du\",\"doi\":\"10.1109/TCPMT.2024.3511042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents an innovative noncontact packaging technique for photonic integrated circuits (PICs) and electronic integrated circuits (EICs) through inductively coupled interconnects. The primary aim of this approach is to enhance thermal isolation between the heat-generating electrical logic die and the thermally sensitive optical interferometer die. The feasibility of this contactless transceiver, which fulfills information transmission from the laser Doppler vibrometry (LDV) to the EIC, is substantiated via electromagnetic simulations. Furthermore, thermal simulations conducted by COMSOL prove that this packaging configuration could potentially reduce the temperature of PICs by up to <inline-formula> <tex-math>$4.6~^{\\\\circ }$ </tex-math></inline-formula>C when compared to the conventional 3-D stack packaging, underlining its potential for improved thermal performance.\",\"PeriodicalId\":13085,\"journal\":{\"name\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"volume\":\"15 1\",\"pages\":\"232-234\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10777579/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10777579/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Noncontact Integration of Photonic IC and Electronic IC via Inductively Coupled Interconnects
This letter presents an innovative noncontact packaging technique for photonic integrated circuits (PICs) and electronic integrated circuits (EICs) through inductively coupled interconnects. The primary aim of this approach is to enhance thermal isolation between the heat-generating electrical logic die and the thermally sensitive optical interferometer die. The feasibility of this contactless transceiver, which fulfills information transmission from the laser Doppler vibrometry (LDV) to the EIC, is substantiated via electromagnetic simulations. Furthermore, thermal simulations conducted by COMSOL prove that this packaging configuration could potentially reduce the temperature of PICs by up to $4.6~^{\circ }$ C when compared to the conventional 3-D stack packaging, underlining its potential for improved thermal performance.
期刊介绍:
IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.