首页 > 最新文献

IEEE Transactions on Components, Packaging and Manufacturing Technology最新文献

英文 中文
IEEE Transactions on Components, Packaging and Manufacturing Technology Society Information IEEE元件、封装与制造技术学会汇刊
IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-12 DOI: 10.1109/TCPMT.2025.3640548
{"title":"IEEE Transactions on Components, Packaging and Manufacturing Technology Society Information","authors":"","doi":"10.1109/TCPMT.2025.3640548","DOIUrl":"https://doi.org/10.1109/TCPMT.2025.3640548","url":null,"abstract":"","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 12","pages":"C3-C3"},"PeriodicalIF":3.0,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11345818","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Components, Packaging and Manufacturing Technology Information for Authors IEEE元件、封装与制造技术资讯汇刊
IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-12 DOI: 10.1109/TCPMT.2025.3640546
{"title":"IEEE Transactions on Components, Packaging and Manufacturing Technology Information for Authors","authors":"","doi":"10.1109/TCPMT.2025.3640546","DOIUrl":"https://doi.org/10.1109/TCPMT.2025.3640546","url":null,"abstract":"","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 12","pages":"2801-2801"},"PeriodicalIF":3.0,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11345816","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrections to “Stable HIPPO-Based Circuit Macro-Modeling” 对“基于稳定hippo的电路宏观建模”的修正
IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-24 DOI: 10.1109/TCPMT.2025.3614737
Bijan Shahriari;Roni Khazaka
In [1], typos are present in (6), (26), and (28). The correct equations are, respectively, presented as follows: begin{align*} g(r) approx k_0(t)p_0(r) + {dots }+ k_{mathcal N-1}(t)p_{mathcal N-1}(r). tag {6}end{align*} begin{align*} & dot V(mathbb Z) = left ({{ 2mathbb Z^{top } mathbf P + 2cmathbb {F}(mathbb Z)^{top }mathbf {Omega }}}right) left ({{-mathbb {Z} + Gamma mathbb {WF}(mathbb Z) }}right) & = begin{bmatrix} mathbb Z mathbb {F} end{bmatrix}^{top } & begin{bmatrix} -2mathbf P {& } mathbf PGamma mathbb W - cmathbf {Omega } mathbb W^{top } Gamma ^ {top }mathbf P - cmathbf {Omega }{& } left ({{mathbf {Omega }Gamma mathbb W + mathbb W^{top }Gamma ^ {top }mathbf {Omega }}}right)c end{bmatrix} begin{bmatrix} mathbb Z mathbb {F} end{bmatrix}. tag {26}end{align*} begin{align*} & mathbb H & = begin{bmatrix} -2mathbf P {& } mathbf PGamma mathbb W mathbb W^{top } Gamma ^ {top }mathbf P {& } left [{{mathbf {Omega }left ({{Gamma mathbb W - mathbf I}}right) + left ({{mathbb W^{top } Gamma ^ {top } - mathbf I}}right)mathbf {Omega }}}right]c end{bmatrix}. tag {28}end{align*}
在[1]中,(6)、(26)和(28)中出现了错别字。正确的方程分别为: begin{align*} g(r) approx k_0(t)p_0(r) + {dots }+ k_{mathcal N-1}(t)p_{mathcal N-1}(r). tag {6}end{align*} begin{align*} & dot V(mathbb Z) = left ({{ 2mathbb Z^{top } mathbf P + 2cmathbb {F}(mathbb Z)^{top }mathbf {Omega }}}right) left ({{-mathbb {Z} + Gamma mathbb {WF}(mathbb Z) }}right) & = begin{bmatrix} mathbb Z mathbb {F} end{bmatrix}^{top } & begin{bmatrix} -2mathbf P {& } mathbf PGamma mathbb W - cmathbf {Omega } mathbb W^{top } Gamma ^ {top }mathbf P - cmathbf {Omega }{& } left ({{mathbf {Omega }Gamma mathbb W + mathbb W^{top }Gamma ^ {top }mathbf {Omega }}}right)c end{bmatrix} begin{bmatrix} mathbb Z mathbb {F} end{bmatrix}. tag {26}end{align*} begin{align*} & mathbb H & = begin{bmatrix} -2mathbf P {& } mathbf PGamma mathbb W mathbb W^{top } Gamma ^ {top }mathbf P {& } left [{{mathbf {Omega }left ({{Gamma mathbb W - mathbf I}}right) + left ({{mathbb W^{top } Gamma ^ {top } - mathbf I}}right)mathbf {Omega }}}right]c end{bmatrix}. tag {28}end{align*}
{"title":"Corrections to “Stable HIPPO-Based Circuit Macro-Modeling”","authors":"Bijan Shahriari;Roni Khazaka","doi":"10.1109/TCPMT.2025.3614737","DOIUrl":"https://doi.org/10.1109/TCPMT.2025.3614737","url":null,"abstract":"In [1], typos are present in (6), (26), and (28). The correct equations are, respectively, presented as follows: begin{align*} g(r) approx k_0(t)p_0(r) + {dots }+ k_{mathcal N-1}(t)p_{mathcal N-1}(r). tag {6}end{align*} begin{align*} & dot V(mathbb Z) = left ({{ 2mathbb Z^{top } mathbf P + 2cmathbb {F}(mathbb Z)^{top }mathbf {Omega }}}right) left ({{-mathbb {Z} + Gamma mathbb {WF}(mathbb Z) }}right) & = begin{bmatrix} mathbb Z mathbb {F} end{bmatrix}^{top } & begin{bmatrix} -2mathbf P {& } mathbf PGamma mathbb W - cmathbf {Omega } mathbb W^{top } Gamma ^ {top }mathbf P - cmathbf {Omega }{& } left ({{mathbf {Omega }Gamma mathbb W + mathbb W^{top }Gamma ^ {top }mathbf {Omega }}}right)c end{bmatrix} begin{bmatrix} mathbb Z mathbb {F} end{bmatrix}. tag {26}end{align*} begin{align*} & mathbb H & = begin{bmatrix} -2mathbf P {& } mathbf PGamma mathbb W mathbb W^{top } Gamma ^ {top }mathbf P {& } left [{{mathbf {Omega }left ({{Gamma mathbb W - mathbf I}}right) + left ({{mathbb W^{top } Gamma ^ {top } - mathbf I}}right)mathbf {Omega }}}right]c end{bmatrix}. tag {28}end{align*}","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 11","pages":"2546-2546"},"PeriodicalIF":3.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11264839","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145584689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Components, Packaging and Manufacturing Technology Society Information IEEE元件、封装与制造技术学会汇刊
IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-24 DOI: 10.1109/TCPMT.2025.3626875
{"title":"IEEE Transactions on Components, Packaging and Manufacturing Technology Society Information","authors":"","doi":"10.1109/TCPMT.2025.3626875","DOIUrl":"https://doi.org/10.1109/TCPMT.2025.3626875","url":null,"abstract":"","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 11","pages":"C3-C3"},"PeriodicalIF":3.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11264860","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145584638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Components, Packaging and Manufacturing Technology Information for Authors IEEE元件、封装与制造技术资讯汇刊
IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-24 DOI: 10.1109/TCPMT.2025.3626873
{"title":"IEEE Transactions on Components, Packaging and Manufacturing Technology Information for Authors","authors":"","doi":"10.1109/TCPMT.2025.3626873","DOIUrl":"https://doi.org/10.1109/TCPMT.2025.3626873","url":null,"abstract":"","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 11","pages":"2547-2547"},"PeriodicalIF":3.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11264838","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145584690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Components, Packaging and Manufacturing Technology Information for Authors IEEE元件、封装与制造技术资讯汇刊
IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-10-28 DOI: 10.1109/TCPMT.2025.3620696
{"title":"IEEE Transactions on Components, Packaging and Manufacturing Technology Information for Authors","authors":"","doi":"10.1109/TCPMT.2025.3620696","DOIUrl":"https://doi.org/10.1109/TCPMT.2025.3620696","url":null,"abstract":"","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 10","pages":"2279-2279"},"PeriodicalIF":3.0,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11220147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145374745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Components, Packaging and Manufacturing Technology Society Information IEEE元件、封装与制造技术学会汇刊
IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-10-28 DOI: 10.1109/TCPMT.2025.3620698
{"title":"IEEE Transactions on Components, Packaging and Manufacturing Technology Society Information","authors":"","doi":"10.1109/TCPMT.2025.3620698","DOIUrl":"https://doi.org/10.1109/TCPMT.2025.3620698","url":null,"abstract":"","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 10","pages":"C3-C3"},"PeriodicalIF":3.0,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11220138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145374730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EM-Induced Voiding Mechanism in Trapped Sn Phase Inside Massive Cu–Sn Compound 块状Cu-Sn化合物中被困Sn相的电磁致空化机制
IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-10-23 DOI: 10.1109/TCPMT.2025.3624273
Po-Yu Chen;Chieh-Pu Tsai;Liu-Hsin-Chen Yang;Kai-Chi Lin;Chih-Wen Chiu;Chih-En Hsu;Chung-Yu Chiu;Jui-Shen Chang;Chen-Nan Chiu;David T. Chu;Yao-Chun Chuang;Cheng-Yi Liu
This letter proposes a detailed analysis of the electromigration (EM)-induced voiding process in current-stressed Cu pillar/solder/Cu pad bumps, focusing on the amount and locations of void formation. Severe voiding primarily occurs within the Sn phase, which becomes trapped due to the uneven growth of a massive Cu ${}_{mathbf {6}}$ Sn ${}_{mathbf {5}}$ intermetallic compound. This phenomenon is identified as a crucial factor leading to EM failure and a reduced bump lifetime. The voiding in the trapped Sn phase is attributed to two main mechanisms: 1) the formation of Sn vacancies due to backfilling Sn flux as Cu pads are consumed and 2) the nonconservative volume change associated with the transformation of Sn phase into Cu ${}_{mathbf {6}}$ Sn ${}_{mathbf {5}}$ phase. The uneven growth of the massive Cu ${}_{mathbf {6}}$ Sn ${}_{mathbf {5}}$ compound is linked to the preferential dissolution of Cu fluxes, which are driven by the anisotropic diffusivity of Sn within its lattice and the divergence of atomic fluxes at Sn grain boundaries.
本文提出了对电流应力下铜柱/焊料/铜垫凸起中电迁移(EM)诱导的空穴过程的详细分析,重点是空穴形成的数量和位置。由于大量Cu ${}_{mathbf {6}}$ Sn ${}_{mathbf{5}}$金属间化合物的不均匀生长,Sn ${}_{mathbf{5}}$发生了严重的空化。这种现象被认为是导致EM失效和碰撞寿命缩短的关键因素。捕获Sn相的空化主要有两种机制:1)Cu衬垫被消耗时,由于Sn通量的充填而形成Sn空位;2)Sn相转变为Cu ${}_{mathbf {6}}$ Sn ${}_{mathbf{5}}$相引起的非保守体积变化。Cu ${}_{mathbf {6}}$ Sn ${}_{mathbf{5}}$化合物的不均匀生长与Cu通量的优先溶解有关,这是由Sn在其晶格内的各向异性扩散率和Sn晶界原子通量的发散驱动的。
{"title":"EM-Induced Voiding Mechanism in Trapped Sn Phase Inside Massive Cu–Sn Compound","authors":"Po-Yu Chen;Chieh-Pu Tsai;Liu-Hsin-Chen Yang;Kai-Chi Lin;Chih-Wen Chiu;Chih-En Hsu;Chung-Yu Chiu;Jui-Shen Chang;Chen-Nan Chiu;David T. Chu;Yao-Chun Chuang;Cheng-Yi Liu","doi":"10.1109/TCPMT.2025.3624273","DOIUrl":"https://doi.org/10.1109/TCPMT.2025.3624273","url":null,"abstract":"This letter proposes a detailed analysis of the electromigration (EM)-induced voiding process in current-stressed Cu pillar/solder/Cu pad bumps, focusing on the amount and locations of void formation. Severe voiding primarily occurs within the Sn phase, which becomes trapped due to the uneven growth of a massive Cu<inline-formula> <tex-math>${}_{mathbf {6}}$ </tex-math></inline-formula> Sn<inline-formula> <tex-math>${}_{mathbf {5}}$ </tex-math></inline-formula> intermetallic compound. This phenomenon is identified as a crucial factor leading to EM failure and a reduced bump lifetime. The voiding in the trapped Sn phase is attributed to two main mechanisms: 1) the formation of Sn vacancies due to backfilling Sn flux as Cu pads are consumed and 2) the nonconservative volume change associated with the transformation of Sn phase into Cu<inline-formula> <tex-math>${}_{mathbf {6}}$ </tex-math></inline-formula>Sn<inline-formula> <tex-math>${}_{mathbf {5}}$ </tex-math></inline-formula> phase. The uneven growth of the massive Cu<inline-formula> <tex-math>${}_{mathbf {6}}$ </tex-math></inline-formula>Sn<inline-formula> <tex-math>${}_{mathbf {5}}$ </tex-math></inline-formula> compound is linked to the preferential dissolution of Cu fluxes, which are driven by the anisotropic diffusivity of Sn within its lattice and the divergence of atomic fluxes at Sn grain boundaries.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 12","pages":"2797-2800"},"PeriodicalIF":3.0,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Metal-Lidded Microfluidic Cooling on a High-Power AI Chip Using Confined Two-Phase Liquid Jet With Dielectric Fluid R1233zd(E) 基于介电流体R1233zd(E)的高功率AI芯片金属盖集成微流控冷却
IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-10-20 DOI: 10.1109/TCPMT.2025.3623470
Gopinath Sahu;Sidharth Rajeev;Duc Hoang;Harish Kumar Lattupalli;Srikanth Rangarajan;Bahgat G. Sammakia;Scott Schiffres;Tiwei Wei
Innovative thermal management solutions are required to maintain a lower operating temperature of current lidless packages of AI chips. This study systematically investigates direct-on-chip multiliquid jets cooling over a 2.5-D interposer package using dielectric fluid. A compact metallic and lid-compatible manifold is proposed using 3-D printing technology with alternating impinging and draining nozzles, matching the dimensions of NVIDIA V100 chip. The fabricated manifold is mounted over the stiffener and mechanically pressurized with top cover plate and screw arrangement to ensure mechanical robustness and leak proof operation. A dielectric fluid R1233zd(E) is used as a working fluid at a saturation temperature of $37.5~^{circ }$ C. Operating GPU temperature is experimentally measured for various flow rates, and power load up to thermal design power of 300 W using embedded sensor within the device. The finding under two-phase operation reveals a significantly lower temperature, measuring lowest thermal resistance of ~0.05 K/W with excellent response for step variation in power maps. This enhanced thermal dissipation at the chip level facilitates the compact lidded manifold package and next-generation AI chip.
目前的人工智能芯片无盖封装需要创新的热管理解决方案来保持较低的工作温度。本研究系统地研究了直接片上多液体射流在2.5维介电介质封装上的冷却。采用3-D打印技术,设计了一种与NVIDIA V100芯片尺寸相匹配的具有交错冲击和排水喷嘴的紧凑型金属和盖兼容歧管。制造的歧管安装在加强板和机械加压与上盖板和螺钉安排,以确保机械坚固性和防泄漏操作。采用介电流体R1233zd(E)作为工作流体,饱和温度为$37.5~^{circ}$ c。通过器件内的嵌入式传感器,实验测量了不同流量下GPU的工作温度,以及热设计功率为300 W的功率负载。两相操作下的结果显示温度明显降低,测量到的最低热阻为~0.05 K/W,对功率图的阶跃变化具有良好的响应。这种芯片级的增强散热有助于紧凑的盒式流形封装和下一代人工智能芯片。
{"title":"Integrated Metal-Lidded Microfluidic Cooling on a High-Power AI Chip Using Confined Two-Phase Liquid Jet With Dielectric Fluid R1233zd(E)","authors":"Gopinath Sahu;Sidharth Rajeev;Duc Hoang;Harish Kumar Lattupalli;Srikanth Rangarajan;Bahgat G. Sammakia;Scott Schiffres;Tiwei Wei","doi":"10.1109/TCPMT.2025.3623470","DOIUrl":"https://doi.org/10.1109/TCPMT.2025.3623470","url":null,"abstract":"Innovative thermal management solutions are required to maintain a lower operating temperature of current lidless packages of AI chips. This study systematically investigates direct-on-chip multiliquid jets cooling over a 2.5-D interposer package using dielectric fluid. A compact metallic and lid-compatible manifold is proposed using 3-D printing technology with alternating impinging and draining nozzles, matching the dimensions of NVIDIA V100 chip. The fabricated manifold is mounted over the stiffener and mechanically pressurized with top cover plate and screw arrangement to ensure mechanical robustness and leak proof operation. A dielectric fluid R1233zd(E) is used as a working fluid at a saturation temperature of <inline-formula> <tex-math>$37.5~^{circ }$ </tex-math></inline-formula>C. Operating GPU temperature is experimentally measured for various flow rates, and power load up to thermal design power of 300 W using embedded sensor within the device. The finding under two-phase operation reveals a significantly lower temperature, measuring lowest thermal resistance of ~0.05 K/W with excellent response for step variation in power maps. This enhanced thermal dissipation at the chip level facilitates the compact lidded manifold package and next-generation AI chip.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 12","pages":"2789-2792"},"PeriodicalIF":3.0,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Wideband Bandpass Filter in Single SIW Cavity for 5G mmWave Systems 5G毫米波系统单SIW腔双宽带带通滤波器
IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-10-17 DOI: 10.1109/TCPMT.2025.3622728
Guangwei Fan;Xiaohuai He;Dawei Ding
In this letter, a dual-wideband bandpass filter (BPF) covering 22.4–29 GHz (25.7%) and 36.85–45.2 GHz (20.4%) is designed in one substrate-integrated waveguide (SIW) cavity. It has one SIW cavity and two multimode resonant structures (MMRSs) consisting of one nonuniform H-shaped structure (NHS) and two L-shaped structures (LSs). There are six resonant modes, including the TE110 and TE120 modes of SIW cavity, two self-resonant modes from NHS, and a pair of odd and even modes from LSs. Four transmission zeros (TZs) are generated through their cross-coupling without any filtering circuit. As seen from design results, it provides a great candidate for 5G mmWave applications owing to its wide bandwidth, self-packaging, and easy integration.
在这封信中,设计了一个覆盖22.4-29 GHz(25.7%)和36.85-45.2 GHz(20.4%)的双宽带带通滤波器(BPF)在一个衬底集成波导(SIW)腔中。它有一个SIW腔和两个多模谐振结构(MMRSs),由一个非均匀h形结构(NHS)和两个l形结构(ls)组成。有6种谐振模式,包括SIW腔的TE110和TE120模式、NHS腔的2种自谐振模式和LSs腔的一对奇偶模式。四个传输零(TZs)是通过它们的交叉耦合产生的,不需要任何滤波电路。从设计结果来看,由于其宽带宽、自封装和易于集成,它为5G毫米波应用提供了一个很好的候选者。
{"title":"Dual-Wideband Bandpass Filter in Single SIW Cavity for 5G mmWave Systems","authors":"Guangwei Fan;Xiaohuai He;Dawei Ding","doi":"10.1109/TCPMT.2025.3622728","DOIUrl":"https://doi.org/10.1109/TCPMT.2025.3622728","url":null,"abstract":"In this letter, a dual-wideband bandpass filter (BPF) covering 22.4–29 GHz (25.7%) and 36.85–45.2 GHz (20.4%) is designed in one substrate-integrated waveguide (SIW) cavity. It has one SIW cavity and two multimode resonant structures (MMRSs) consisting of one nonuniform H-shaped structure (NHS) and two L-shaped structures (LSs). There are six resonant modes, including the TE<sub>110</sub> and TE<sub>120</sub> modes of SIW cavity, two self-resonant modes from NHS, and a pair of odd and even modes from LSs. Four transmission zeros (TZs) are generated through their cross-coupling without any filtering circuit. As seen from design results, it provides a great candidate for 5G mmWave applications owing to its wide bandwidth, self-packaging, and easy integration.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 12","pages":"2793-2796"},"PeriodicalIF":3.0,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Components, Packaging and Manufacturing Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1