可扩展的无小区大规模MIMO与室内/室外用户

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2024-12-30 DOI:10.1109/OJVT.2024.3524271
Felip Riera-Palou;Miquel Duran;Guillem Femenias
{"title":"可扩展的无小区大规模MIMO与室内/室外用户","authors":"Felip Riera-Palou;Miquel Duran;Guillem Femenias","doi":"10.1109/OJVT.2024.3524271","DOIUrl":null,"url":null,"abstract":"Cell-free networks are expected to be a forthcoming (r)evolutionary step in the coming generation of mobile networks, the so called 6 G. While mobile infrastructure is often assumed to be deployed outdoor by the operators, reality is that most of the traffic has at least one of the communication ends located indoors. This paper introduces the problem of providing wireless service to a heterogeneous population made of indoor and outdoor users using an outdoor cell-free massive MIMO (CF-mMIMO) infrastructure. It is shown how the pervasive max-min criterion (in cell-free setups) that results in near-uniform quality-of-service to all users may lead to catastrophic consequences when some of the users happen to be indoor. This problem is analyzed in both communication directions, uplink and downlink, exposing the similarities and differences of these two scenarios. Direction-specific solutions are then provided that involve improving the channel estimation and connectivity of indoor users and modifying the power allocation so as to somehow compensate for the wall propagation indoor users have to endure. All the techniques introduced satisfy the scalability requirements thus making our proposal realistically implementable.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"332-347"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818704","citationCount":"0","resultStr":"{\"title\":\"Scalable Cell-Free Massive MIMO With Indoor/Outdoor Users\",\"authors\":\"Felip Riera-Palou;Miquel Duran;Guillem Femenias\",\"doi\":\"10.1109/OJVT.2024.3524271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell-free networks are expected to be a forthcoming (r)evolutionary step in the coming generation of mobile networks, the so called 6 G. While mobile infrastructure is often assumed to be deployed outdoor by the operators, reality is that most of the traffic has at least one of the communication ends located indoors. This paper introduces the problem of providing wireless service to a heterogeneous population made of indoor and outdoor users using an outdoor cell-free massive MIMO (CF-mMIMO) infrastructure. It is shown how the pervasive max-min criterion (in cell-free setups) that results in near-uniform quality-of-service to all users may lead to catastrophic consequences when some of the users happen to be indoor. This problem is analyzed in both communication directions, uplink and downlink, exposing the similarities and differences of these two scenarios. Direction-specific solutions are then provided that involve improving the channel estimation and connectivity of indoor users and modifying the power allocation so as to somehow compensate for the wall propagation indoor users have to endure. All the techniques introduced satisfy the scalability requirements thus making our proposal realistically implementable.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"332-347\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818704\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10818704/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818704/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无蜂窝网络预计将成为下一代移动网络(即所谓的6g)即将到来的(r)进化步骤。尽管运营商通常认为移动基础设施部署在室外,但现实情况是,大多数流量至少有一个通信终端位于室内。本文介绍了利用室外无蜂窝大规模MIMO (CF-mMIMO)基础设施向由室内和室外用户组成的异构人群提供无线服务的问题。它显示了普遍的最大最小标准(在无小区设置中)如何导致所有用户的服务质量几乎一致,但当一些用户恰好在室内时,可能会导致灾难性的后果。从上行和下行两个通信方向对该问题进行了分析,揭示了这两种场景的异同。然后提供特定方向的解决方案,涉及改进室内用户的信道估计和连通性,并修改功率分配,以便以某种方式补偿室内用户必须忍受的墙壁传播。所介绍的所有技术都满足可伸缩性要求,从而使我们的建议实际可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable Cell-Free Massive MIMO With Indoor/Outdoor Users
Cell-free networks are expected to be a forthcoming (r)evolutionary step in the coming generation of mobile networks, the so called 6 G. While mobile infrastructure is often assumed to be deployed outdoor by the operators, reality is that most of the traffic has at least one of the communication ends located indoors. This paper introduces the problem of providing wireless service to a heterogeneous population made of indoor and outdoor users using an outdoor cell-free massive MIMO (CF-mMIMO) infrastructure. It is shown how the pervasive max-min criterion (in cell-free setups) that results in near-uniform quality-of-service to all users may lead to catastrophic consequences when some of the users happen to be indoor. This problem is analyzed in both communication directions, uplink and downlink, exposing the similarities and differences of these two scenarios. Direction-specific solutions are then provided that involve improving the channel estimation and connectivity of indoor users and modifying the power allocation so as to somehow compensate for the wall propagation indoor users have to endure. All the techniques introduced satisfy the scalability requirements thus making our proposal realistically implementable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
2024 Index IEEE Open Journal of Vehicular Technology Vol. 5 Real-Time Heterogeneous Collaborative Perception in Edge-Enabled Vehicular Environments Coverage Probability of RIS-Assisted Wireless Communication Systems With Random User Deployment Over Nakagami-$m$ Fading Channel CDMA/OTFS Sensing Outperforms Pure OTFS at the Same Communication Throughput Cellular Uplink Impairments in Vehicular Repeater Deployments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1