性别偏见衰减预测中机器学习算法的可持续选择

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2024-11-20 DOI:10.1109/OJVT.2024.3502921
Raik Orbay;Evelina Wikner
{"title":"性别偏见衰减预测中机器学习算法的可持续选择","authors":"Raik Orbay;Evelina Wikner","doi":"10.1109/OJVT.2024.3502921","DOIUrl":null,"url":null,"abstract":"Research into novel approaches like Machine Learning (ML) promotes a new set of opportunities for sustainable development of applications through automation. However, there are certain ML tasks which are prone to spurious classification, mainly due to the bias in legacy data. One well-known and highly actual misclassification case concerns gender. As the vast dataset for engineering rules, standards and experiments are based on men, a bias towards women is the subject of research. Accordingly, any bias should be contained before the algorithms are deployed to the service of the sustainable society. There is a substantial amount of data on ML gender-bias in the literature. In these, the majority of the investigated cases are for ML branches like image or sound processing and text recognition. However, utilizing ML for driving style investigations is not an extensively researched area. In this work, a novel application for gender-based classification with bias-attenuation using anonymized driving data will be presented. Using data devoid of biometric and geographic information, the proposed pipeline distinguishes manifested binary genders with 80% accuracy for the drivers in the holdout data set. In addition, a method for sustainable algorithm selection and its extension to embedded applications, is proposed. An investigation into the environmental burden of seven different types of ML algorithms was conducted and the popular neural network algorithm had the highest environmental burden.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"348-358"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759097","citationCount":"0","resultStr":"{\"title\":\"Sustainable Selection of Machine Learning Algorithm for Gender-Bias Attenuated Prediction\",\"authors\":\"Raik Orbay;Evelina Wikner\",\"doi\":\"10.1109/OJVT.2024.3502921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research into novel approaches like Machine Learning (ML) promotes a new set of opportunities for sustainable development of applications through automation. However, there are certain ML tasks which are prone to spurious classification, mainly due to the bias in legacy data. One well-known and highly actual misclassification case concerns gender. As the vast dataset for engineering rules, standards and experiments are based on men, a bias towards women is the subject of research. Accordingly, any bias should be contained before the algorithms are deployed to the service of the sustainable society. There is a substantial amount of data on ML gender-bias in the literature. In these, the majority of the investigated cases are for ML branches like image or sound processing and text recognition. However, utilizing ML for driving style investigations is not an extensively researched area. In this work, a novel application for gender-based classification with bias-attenuation using anonymized driving data will be presented. Using data devoid of biometric and geographic information, the proposed pipeline distinguishes manifested binary genders with 80% accuracy for the drivers in the holdout data set. In addition, a method for sustainable algorithm selection and its extension to embedded applications, is proposed. An investigation into the environmental burden of seven different types of ML algorithms was conducted and the popular neural network algorithm had the highest environmental burden.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"348-358\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759097\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10759097/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759097/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对机器学习(ML)等新方法的研究为通过自动化实现应用程序的可持续发展提供了一系列新的机会。然而,有些机器学习任务容易出现错误分类,这主要是由于遗留数据的偏差。一个众所周知且高度真实的错误分类案例与性别有关。由于工程规则、标准和实验的庞大数据集是基于男性的,因此对女性的偏见是研究的主题。因此,在算法为可持续社会服务之前,任何偏见都应该被遏制。文献中有大量关于ML性别偏见的数据。在这些案例中,大多数调查案例都是针对ML分支,如图像或声音处理和文本识别。然而,利用机器学习进行驾驶风格调查并不是一个广泛研究的领域。在这项工作中,将提出一种使用匿名驾驶数据进行基于性别的偏差衰减分类的新应用。该管道使用缺乏生物特征和地理信息的数据,以80%的准确率区分出滞留数据集中司机的二元性别。此外,提出了一种可持续算法选择方法,并将其推广到嵌入式应用中。对7种不同ML算法的环境负担进行了研究,结果表明,最流行的神经网络算法的环境负担最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable Selection of Machine Learning Algorithm for Gender-Bias Attenuated Prediction
Research into novel approaches like Machine Learning (ML) promotes a new set of opportunities for sustainable development of applications through automation. However, there are certain ML tasks which are prone to spurious classification, mainly due to the bias in legacy data. One well-known and highly actual misclassification case concerns gender. As the vast dataset for engineering rules, standards and experiments are based on men, a bias towards women is the subject of research. Accordingly, any bias should be contained before the algorithms are deployed to the service of the sustainable society. There is a substantial amount of data on ML gender-bias in the literature. In these, the majority of the investigated cases are for ML branches like image or sound processing and text recognition. However, utilizing ML for driving style investigations is not an extensively researched area. In this work, a novel application for gender-based classification with bias-attenuation using anonymized driving data will be presented. Using data devoid of biometric and geographic information, the proposed pipeline distinguishes manifested binary genders with 80% accuracy for the drivers in the holdout data set. In addition, a method for sustainable algorithm selection and its extension to embedded applications, is proposed. An investigation into the environmental burden of seven different types of ML algorithms was conducted and the popular neural network algorithm had the highest environmental burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
2024 Index IEEE Open Journal of Vehicular Technology Vol. 5 Real-Time Heterogeneous Collaborative Perception in Edge-Enabled Vehicular Environments Coverage Probability of RIS-Assisted Wireless Communication Systems With Random User Deployment Over Nakagami-$m$ Fading Channel CDMA/OTFS Sensing Outperforms Pure OTFS at the Same Communication Throughput Cellular Uplink Impairments in Vehicular Repeater Deployments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1