Yuchen Wang, Zixuan Zhou, Bin Qin, Qingyu Chang, Shanshan Dang, Yiqin Hu, Kun Li, Yuanjie Bao, Jianing Mao, Haiyan Yang, Yang Liu, Jiong Li, Shenggang Li, David A. Dixon, Yuhan Sun and Peng Gao
{"title":"Pt/In2O3单原子CO2加氢制甲醇催化剂的计算机辅助设计","authors":"Yuchen Wang, Zixuan Zhou, Bin Qin, Qingyu Chang, Shanshan Dang, Yiqin Hu, Kun Li, Yuanjie Bao, Jianing Mao, Haiyan Yang, Yang Liu, Jiong Li, Shenggang Li, David A. Dixon, Yuhan Sun and Peng Gao","doi":"10.1039/D4EY00218K","DOIUrl":null,"url":null,"abstract":"<p >Methanol (CH<small><sub>3</sub></small>OH) synthesis from carbon dioxide (CO<small><sub>2</sub></small>) hydrogenation is an industrially viable approach to CO<small><sub>2</sub></small> utilization. For the recently developed indium oxide (In<small><sub>2</sub></small>O<small><sub>3</sub></small>) catalyst, higher performance may be achieved by introducing transition metal promoters, although recent studies suggest that single atom sites favour CO formation. Here, by density functional theory-based microkinetic simulations, bulk-doped Pt/In<small><sub>2</sub></small>O<small><sub>3</sub></small> single atom catalysts (SACs) with much higher CO<small><sub>2</sub></small> reactivity than the In<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst while maintaining CH<small><sub>3</sub></small>OH selectivity were designed. Several Pt/In<small><sub>2</sub></small>O<small><sub>3</sub></small> SACs were synthesized to confirm our theoretical predictions. The synthesized Pt/In<small><sub>2</sub></small>O<small><sub>3</sub></small> SAC in the predominantly bulk-doped form exhibits much higher CO<small><sub>2</sub></small> reactivity than the In<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst with high stability and similar CH<small><sub>3</sub></small>OH selectivity, yielding a CH<small><sub>3</sub></small>OH productivity of 1.25 g g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>. This study demonstrates the power of computational methods in designing oxide-based catalysts for industrial reactions and reveals a bulk-doped SAC with high performance.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 106-118"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00218k?page=search","citationCount":"0","resultStr":"{\"title\":\"Computer-aided design of Pt/In2O3 single-atom catalysts for CO2 hydrogenation to methanol†\",\"authors\":\"Yuchen Wang, Zixuan Zhou, Bin Qin, Qingyu Chang, Shanshan Dang, Yiqin Hu, Kun Li, Yuanjie Bao, Jianing Mao, Haiyan Yang, Yang Liu, Jiong Li, Shenggang Li, David A. Dixon, Yuhan Sun and Peng Gao\",\"doi\":\"10.1039/D4EY00218K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Methanol (CH<small><sub>3</sub></small>OH) synthesis from carbon dioxide (CO<small><sub>2</sub></small>) hydrogenation is an industrially viable approach to CO<small><sub>2</sub></small> utilization. For the recently developed indium oxide (In<small><sub>2</sub></small>O<small><sub>3</sub></small>) catalyst, higher performance may be achieved by introducing transition metal promoters, although recent studies suggest that single atom sites favour CO formation. Here, by density functional theory-based microkinetic simulations, bulk-doped Pt/In<small><sub>2</sub></small>O<small><sub>3</sub></small> single atom catalysts (SACs) with much higher CO<small><sub>2</sub></small> reactivity than the In<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst while maintaining CH<small><sub>3</sub></small>OH selectivity were designed. Several Pt/In<small><sub>2</sub></small>O<small><sub>3</sub></small> SACs were synthesized to confirm our theoretical predictions. The synthesized Pt/In<small><sub>2</sub></small>O<small><sub>3</sub></small> SAC in the predominantly bulk-doped form exhibits much higher CO<small><sub>2</sub></small> reactivity than the In<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst with high stability and similar CH<small><sub>3</sub></small>OH selectivity, yielding a CH<small><sub>3</sub></small>OH productivity of 1.25 g g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>. This study demonstrates the power of computational methods in designing oxide-based catalysts for industrial reactions and reveals a bulk-doped SAC with high performance.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 1\",\"pages\":\" 106-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00218k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00218k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00218k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由二氧化碳(CO2)加氢合成甲醇(CH3OH)是一种工业上可行的利用二氧化碳的方法。对于最近开发的氧化铟(In2O3)催化剂,通过引入过渡金属促进剂可以获得更高的性能,尽管最近的研究表明单原子位置有利于CO的形成。本文通过基于密度泛函理论的微动力学模拟,设计了体积掺杂Pt/In2O3单原子催化剂(SACs),该催化剂在保持CH3OH选择性的同时具有比In2O3催化剂更高的CO2反应活性。合成了几种Pt/In2O3 SACs来证实我们的理论预测。以大块掺杂形式合成的Pt/In2O3 SAC表现出比In2O3催化剂更高的CO2反应活性,具有高稳定性和相似的CH3OH选择性,CH3OH产率为1.25 g gcat−1 h−1。本研究证明了计算方法在设计工业反应中基于氧化物的催化剂方面的力量,并揭示了具有高性能的块体掺杂SAC。
Computer-aided design of Pt/In2O3 single-atom catalysts for CO2 hydrogenation to methanol†
Methanol (CH3OH) synthesis from carbon dioxide (CO2) hydrogenation is an industrially viable approach to CO2 utilization. For the recently developed indium oxide (In2O3) catalyst, higher performance may be achieved by introducing transition metal promoters, although recent studies suggest that single atom sites favour CO formation. Here, by density functional theory-based microkinetic simulations, bulk-doped Pt/In2O3 single atom catalysts (SACs) with much higher CO2 reactivity than the In2O3 catalyst while maintaining CH3OH selectivity were designed. Several Pt/In2O3 SACs were synthesized to confirm our theoretical predictions. The synthesized Pt/In2O3 SAC in the predominantly bulk-doped form exhibits much higher CO2 reactivity than the In2O3 catalyst with high stability and similar CH3OH selectivity, yielding a CH3OH productivity of 1.25 g gcat−1 h−1. This study demonstrates the power of computational methods in designing oxide-based catalysts for industrial reactions and reveals a bulk-doped SAC with high performance.