实际操作条件下大规模制氢的稀有金属单原子催化剂

EES catalysis Pub Date : 2024-11-11 DOI:10.1039/D4EY00205A
Jiaye Li, Xu Tian, Changle Yue, Han Guo, Zhidong Wang, Mengdi Guo, Siying Huang, Yang Song, Wei Lin, Yichuan Li, Bin Liu and Yuan Pan
{"title":"实际操作条件下大规模制氢的稀有金属单原子催化剂","authors":"Jiaye Li, Xu Tian, Changle Yue, Han Guo, Zhidong Wang, Mengdi Guo, Siying Huang, Yang Song, Wei Lin, Yichuan Li, Bin Liu and Yuan Pan","doi":"10.1039/D4EY00205A","DOIUrl":null,"url":null,"abstract":"<p >The electrocatalytic hydrogen evolution reaction (HER) is an efficient technology for hydrogen production and holds great significance for the development of renewable energy economies. Rare-metal-based catalysts are considered benchmark catalysts for the HER; however, their application in HER reactors is limited due to their high cost and poor stability. Rare-metal single atom catalysts (RMSACs) can be considered as promising candidates for the HER due to several advantages such as high activity, high stability, and high atom utilization. The rational design of RMSACs for HER reactors has become a research hotspot in this field. This paper reviews the research progress in the development of RMSACs for large scale hydrogen production under actual operating conditions, including high current density, seawater electrolysis, and long-term operation. Firstly, the mechanism, design and synthesis method of RMSACs for the HER are summarized. Then the atomic-level rational design strategy of RMSACs was proposed for enhancing the HER performance under actual operating conditions. Lastly, the opportunities and challenges for industrial applications of RMSACs are also discussed.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 32-56"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00205a?page=search","citationCount":"0","resultStr":"{\"title\":\"Rare-metal single atom catalysts for large scale hydrogen production under actual operating conditions\",\"authors\":\"Jiaye Li, Xu Tian, Changle Yue, Han Guo, Zhidong Wang, Mengdi Guo, Siying Huang, Yang Song, Wei Lin, Yichuan Li, Bin Liu and Yuan Pan\",\"doi\":\"10.1039/D4EY00205A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrocatalytic hydrogen evolution reaction (HER) is an efficient technology for hydrogen production and holds great significance for the development of renewable energy economies. Rare-metal-based catalysts are considered benchmark catalysts for the HER; however, their application in HER reactors is limited due to their high cost and poor stability. Rare-metal single atom catalysts (RMSACs) can be considered as promising candidates for the HER due to several advantages such as high activity, high stability, and high atom utilization. The rational design of RMSACs for HER reactors has become a research hotspot in this field. This paper reviews the research progress in the development of RMSACs for large scale hydrogen production under actual operating conditions, including high current density, seawater electrolysis, and long-term operation. Firstly, the mechanism, design and synthesis method of RMSACs for the HER are summarized. Then the atomic-level rational design strategy of RMSACs was proposed for enhancing the HER performance under actual operating conditions. Lastly, the opportunities and challenges for industrial applications of RMSACs are also discussed.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 1\",\"pages\":\" 32-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00205a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00205a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00205a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电催化析氢反应(HER)是一种高效的制氢技术,对发展可再生能源经济具有重要意义。稀有金属基催化剂被认为是HER的基准催化剂;然而,由于其成本高,稳定性差,在HER反应器中的应用受到限制。稀有金属单原子催化剂(RMSACs)具有高活性、高稳定性和高原子利用率等优点,是一种很有前途的HER催化剂。HER反应器rmsac的合理设计已成为该领域的研究热点。综述了高电流密度、海水电解、长期运行等实际运行条件下rmsac大规模制氢的研究进展。首先,综述了用于HER的rmsac的机理、设计和合成方法。在此基础上,提出了rmsac的原子级合理设计策略,以提高实际运行条件下的HER性能。最后,讨论了rmsac在工业应用中的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rare-metal single atom catalysts for large scale hydrogen production under actual operating conditions

The electrocatalytic hydrogen evolution reaction (HER) is an efficient technology for hydrogen production and holds great significance for the development of renewable energy economies. Rare-metal-based catalysts are considered benchmark catalysts for the HER; however, their application in HER reactors is limited due to their high cost and poor stability. Rare-metal single atom catalysts (RMSACs) can be considered as promising candidates for the HER due to several advantages such as high activity, high stability, and high atom utilization. The rational design of RMSACs for HER reactors has become a research hotspot in this field. This paper reviews the research progress in the development of RMSACs for large scale hydrogen production under actual operating conditions, including high current density, seawater electrolysis, and long-term operation. Firstly, the mechanism, design and synthesis method of RMSACs for the HER are summarized. Then the atomic-level rational design strategy of RMSACs was proposed for enhancing the HER performance under actual operating conditions. Lastly, the opportunities and challenges for industrial applications of RMSACs are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Selective catalytic hydrogenation of C2H2 from plasma-driven CH4 coupling without extra heat: mechanistic insights from micro-kinetic modelling and reactor performance. Heating dictates the scalability of CO2 electrolyzer types. EES Catalysis: embracing energy and environmental catalysis Carbon incorporated isotype heterojunction of poly(heptazine imide) for efficient visible light photocatalytic hydrogen evolution†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1