设计强韧的晶格材料:非局部晶格的优势

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Acta Mechanica Sinica Pub Date : 2024-11-22 DOI:10.1007/s10409-024-24662-x
Wanlu Wang  (, ), Junjie Liu  (, ), Qingsheng Yang  (, )
{"title":"设计强韧的晶格材料:非局部晶格的优势","authors":"Wanlu Wang \n (,&nbsp;),&nbsp;Junjie Liu \n (,&nbsp;),&nbsp;Qingsheng Yang \n (,&nbsp;)","doi":"10.1007/s10409-024-24662-x","DOIUrl":null,"url":null,"abstract":"<div><p>Developing lightweight lattice materials that possess exceptional strength, stiffness, and toughness (or energy absorption) simultaneously remains a significant challenge. In this study, we develop a novel design strategy: incorporating nonlocal interactions into lattice beams, creating “nonlocal lattices”. Utilizing simulation experiments, we investigated the bending behaviors of these lattices, with a particular focus on their damage evolution. Interestingly, these nonlocal lattices, categorized as stretch-dominated, exhibit extraordinary peak force (strength) and stiffness (modulus) comparable to traditional stretch-dominated lattices, while maintaining superior energy absorption (toughness). Analysis of damage evolution within the lattice beams reveals a transition from localized to dispersed damage patterns. This transition delays strain localization, thereby improving material utilization efficiency. Furthermore, stronger nonlocal interaction leads to a more dispersed damage zone, further improving materials utilization efficiency. These findings demonstrate that nonlocal lattices achieve excellent energy dissipation (toughness) without compromising strength and stiffness. This highlights the crucial role of nonlocal interactions in governing strain localization within lattice materials. The design strategy here unlocks new inspirations for the development of strong and tough lightweight materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing strong and tough lattice materials: the advantage of nonlocal lattices\",\"authors\":\"Wanlu Wang \\n (,&nbsp;),&nbsp;Junjie Liu \\n (,&nbsp;),&nbsp;Qingsheng Yang \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-024-24662-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing lightweight lattice materials that possess exceptional strength, stiffness, and toughness (or energy absorption) simultaneously remains a significant challenge. In this study, we develop a novel design strategy: incorporating nonlocal interactions into lattice beams, creating “nonlocal lattices”. Utilizing simulation experiments, we investigated the bending behaviors of these lattices, with a particular focus on their damage evolution. Interestingly, these nonlocal lattices, categorized as stretch-dominated, exhibit extraordinary peak force (strength) and stiffness (modulus) comparable to traditional stretch-dominated lattices, while maintaining superior energy absorption (toughness). Analysis of damage evolution within the lattice beams reveals a transition from localized to dispersed damage patterns. This transition delays strain localization, thereby improving material utilization efficiency. Furthermore, stronger nonlocal interaction leads to a more dispersed damage zone, further improving materials utilization efficiency. These findings demonstrate that nonlocal lattices achieve excellent energy dissipation (toughness) without compromising strength and stiffness. This highlights the crucial role of nonlocal interactions in governing strain localization within lattice materials. The design strategy here unlocks new inspirations for the development of strong and tough lightweight materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24662-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24662-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发同时具有特殊强度、刚度和韧性(或能量吸收)的轻质晶格材料仍然是一个重大挑战。在这项研究中,我们开发了一种新的设计策略:将非局部相互作用纳入晶格梁中,创建“非局部晶格”。利用模拟实验,我们研究了这些晶格的弯曲行为,特别关注了它们的损伤演变。有趣的是,这些被归类为拉伸主导的非局部晶格,与传统的拉伸主导晶格相比,表现出非凡的峰值力(强度)和刚度(模量),同时保持优越的能量吸收(韧性)。点阵梁内部的损伤演化分析揭示了从局部损伤模式到分散损伤模式的转变。这种转变延缓了应变局部化,从而提高了材料利用效率。此外,较强的非局部相互作用使损伤区更加分散,进一步提高了材料的利用效率。这些发现表明,非局部晶格在不影响强度和刚度的情况下具有优异的能量耗散(韧性)。这突出了非局部相互作用在控制晶格材料内应变局域化中的关键作用。这里的设计策略为开发坚固耐用的轻质材料提供了新的灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing strong and tough lattice materials: the advantage of nonlocal lattices

Developing lightweight lattice materials that possess exceptional strength, stiffness, and toughness (or energy absorption) simultaneously remains a significant challenge. In this study, we develop a novel design strategy: incorporating nonlocal interactions into lattice beams, creating “nonlocal lattices”. Utilizing simulation experiments, we investigated the bending behaviors of these lattices, with a particular focus on their damage evolution. Interestingly, these nonlocal lattices, categorized as stretch-dominated, exhibit extraordinary peak force (strength) and stiffness (modulus) comparable to traditional stretch-dominated lattices, while maintaining superior energy absorption (toughness). Analysis of damage evolution within the lattice beams reveals a transition from localized to dispersed damage patterns. This transition delays strain localization, thereby improving material utilization efficiency. Furthermore, stronger nonlocal interaction leads to a more dispersed damage zone, further improving materials utilization efficiency. These findings demonstrate that nonlocal lattices achieve excellent energy dissipation (toughness) without compromising strength and stiffness. This highlights the crucial role of nonlocal interactions in governing strain localization within lattice materials. The design strategy here unlocks new inspirations for the development of strong and tough lightweight materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
期刊最新文献
How does the shape of an inclusion near a bi-material interface evolve to maintain uniform internal stress: the anti-plane shear case Yaw angle effect on flat plate impact and its critical value analysis Investigation of non-Schmid effects in dual-phase steels using a dislocation density-based crystal plasticity model Semi-analytical approach for magneto-fluid-solid interaction dynamics of thin rectangular column Analysis of the practical applicability of the generalized wave impedance hypothesis in split Hopkinson pressure bar tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1