碳基纳米颗粒增强环氧涂层微观结构和力学性能的实验与数值研究

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-12-25 DOI:10.1007/s10118-025-3252-7
Lu-Yang Xu, Xing-Yu Wang, Yi-Zhou Lin, Ying Huang, Cheng-Cheng Tao, Da-Wei Zhang
{"title":"碳基纳米颗粒增强环氧涂层微观结构和力学性能的实验与数值研究","authors":"Lu-Yang Xu,&nbsp;Xing-Yu Wang,&nbsp;Yi-Zhou Lin,&nbsp;Ying Huang,&nbsp;Cheng-Cheng Tao,&nbsp;Da-Wei Zhang","doi":"10.1007/s10118-025-3252-7","DOIUrl":null,"url":null,"abstract":"<div><p>The addition of nanoparticles serves as an effective reinforcement strategy for polymeric coatings, utilizing their unique characteristics as well as extraordinary mechanical, thermal, and electrical properties. The exceptionally high surface-to-volume ratio of nanoparticles imparts remarkable reinforcing potentials, yet it simultaneously gives rise to a prevalent tendency for nanoparticles to agglomerate into clusters within nanocomposites. The agglomeration behavior of the nanoparticles is predominantly influenced by their distinct microstructures and varied weight concentrations. This study investigated the synergistic effects of nanoparticle geometric shape and weight concentration on the dispersion characteristics of nanoparticles and the physical-mechanical performances of nano-reinforced epoxy coatings. Three carbon-based nanoparticles, nanodiamonds (NDs), carbon nanotubes (CNTs), and graphenes (GNPs), were incorporated into epoxy coatings at three weight concentrations (0.5%, 1.0%, and 2.0%). The experimental findings reveal that epoxy coatings reinforced with NDs demonstrated the most homogenous dispersion characteristics, lowest viscosity, and reduced porosity among all the nanoparticles, which could be attributed to the spherical geometry shape. Due to the superior physical properties, ND-reinforced nanocomposites displayed the highest abrasion resistance and tensile properties. Specifically, the 1.0wt% ND-reinforced nanocomposites exhibited 60%, 52%, and 97% improvements in mass lost, tensile strength, and failure strain, respectively, compared to pure epoxy. Furthermore, the representative volume element (RVE) modeling was employed to validate the experimental results, while highlighting the critical role of nanoparticle agglomeration, orientation, and the presence of voids on the mechanical properties of the nanocomposites. Nano-reinforced epoxy coatings with enhanced mechanical properties are well-suited for application in protective coatings for pipelines, industrial equipment, and automotive parts, where high wear resistance is essential.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 1","pages":"211 - 224"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Investigations of Carbon-based Nanoparticle Reinforcement on Microstructure and Mechanical Properties of Epoxy Coatings\",\"authors\":\"Lu-Yang Xu,&nbsp;Xing-Yu Wang,&nbsp;Yi-Zhou Lin,&nbsp;Ying Huang,&nbsp;Cheng-Cheng Tao,&nbsp;Da-Wei Zhang\",\"doi\":\"10.1007/s10118-025-3252-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The addition of nanoparticles serves as an effective reinforcement strategy for polymeric coatings, utilizing their unique characteristics as well as extraordinary mechanical, thermal, and electrical properties. The exceptionally high surface-to-volume ratio of nanoparticles imparts remarkable reinforcing potentials, yet it simultaneously gives rise to a prevalent tendency for nanoparticles to agglomerate into clusters within nanocomposites. The agglomeration behavior of the nanoparticles is predominantly influenced by their distinct microstructures and varied weight concentrations. This study investigated the synergistic effects of nanoparticle geometric shape and weight concentration on the dispersion characteristics of nanoparticles and the physical-mechanical performances of nano-reinforced epoxy coatings. Three carbon-based nanoparticles, nanodiamonds (NDs), carbon nanotubes (CNTs), and graphenes (GNPs), were incorporated into epoxy coatings at three weight concentrations (0.5%, 1.0%, and 2.0%). The experimental findings reveal that epoxy coatings reinforced with NDs demonstrated the most homogenous dispersion characteristics, lowest viscosity, and reduced porosity among all the nanoparticles, which could be attributed to the spherical geometry shape. Due to the superior physical properties, ND-reinforced nanocomposites displayed the highest abrasion resistance and tensile properties. Specifically, the 1.0wt% ND-reinforced nanocomposites exhibited 60%, 52%, and 97% improvements in mass lost, tensile strength, and failure strain, respectively, compared to pure epoxy. Furthermore, the representative volume element (RVE) modeling was employed to validate the experimental results, while highlighting the critical role of nanoparticle agglomeration, orientation, and the presence of voids on the mechanical properties of the nanocomposites. Nano-reinforced epoxy coatings with enhanced mechanical properties are well-suited for application in protective coatings for pipelines, industrial equipment, and automotive parts, where high wear resistance is essential.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"43 1\",\"pages\":\"211 - 224\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-025-3252-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3252-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

纳米颗粒的加入可以作为聚合物涂层的有效增强策略,利用其独特的特性以及非凡的机械、热学和电学性能。纳米颗粒异常高的表面体积比赋予了显著的增强电位,但同时也引起了纳米颗粒在纳米复合材料中聚集成团簇的普遍趋势。纳米颗粒的团聚行为主要受其不同的微观结构和不同的质量浓度的影响。研究了纳米粒子几何形状和质量浓度对纳米粒子分散特性和纳米增强环氧涂料物理力学性能的协同作用。将纳米金刚石(NDs)、碳纳米管(CNTs)和石墨烯(GNPs)三种碳基纳米颗粒以三种重量浓度(0.5%、1.0%和2.0%)掺入环氧涂料中。实验结果表明,纳米颗粒增强的环氧涂层在所有纳米颗粒中表现出最均匀的分散特性、最低的粘度和更低的孔隙率,这可能归因于其球形几何形状。由于其优异的物理性能,nd增强纳米复合材料表现出最高的耐磨性和拉伸性能。具体来说,与纯环氧树脂相比,1.0wt% nd增强纳米复合材料在质量损失、抗拉强度和失效应变方面分别提高了60%、52%和97%。此外,采用代表性体积元(RVE)模型验证了实验结果,同时强调了纳米颗粒团聚、取向和空隙的存在对纳米复合材料力学性能的关键作用。具有增强机械性能的纳米增强环氧树脂涂层非常适合应用于管道,工业设备和汽车部件的保护涂层,其中高耐磨性是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and Numerical Investigations of Carbon-based Nanoparticle Reinforcement on Microstructure and Mechanical Properties of Epoxy Coatings

The addition of nanoparticles serves as an effective reinforcement strategy for polymeric coatings, utilizing their unique characteristics as well as extraordinary mechanical, thermal, and electrical properties. The exceptionally high surface-to-volume ratio of nanoparticles imparts remarkable reinforcing potentials, yet it simultaneously gives rise to a prevalent tendency for nanoparticles to agglomerate into clusters within nanocomposites. The agglomeration behavior of the nanoparticles is predominantly influenced by their distinct microstructures and varied weight concentrations. This study investigated the synergistic effects of nanoparticle geometric shape and weight concentration on the dispersion characteristics of nanoparticles and the physical-mechanical performances of nano-reinforced epoxy coatings. Three carbon-based nanoparticles, nanodiamonds (NDs), carbon nanotubes (CNTs), and graphenes (GNPs), were incorporated into epoxy coatings at three weight concentrations (0.5%, 1.0%, and 2.0%). The experimental findings reveal that epoxy coatings reinforced with NDs demonstrated the most homogenous dispersion characteristics, lowest viscosity, and reduced porosity among all the nanoparticles, which could be attributed to the spherical geometry shape. Due to the superior physical properties, ND-reinforced nanocomposites displayed the highest abrasion resistance and tensile properties. Specifically, the 1.0wt% ND-reinforced nanocomposites exhibited 60%, 52%, and 97% improvements in mass lost, tensile strength, and failure strain, respectively, compared to pure epoxy. Furthermore, the representative volume element (RVE) modeling was employed to validate the experimental results, while highlighting the critical role of nanoparticle agglomeration, orientation, and the presence of voids on the mechanical properties of the nanocomposites. Nano-reinforced epoxy coatings with enhanced mechanical properties are well-suited for application in protective coatings for pipelines, industrial equipment, and automotive parts, where high wear resistance is essential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Boroxine Crystalline Covalent Organic Frameworks Based Single-ion Quasi-solid-state Conductor in Lithium-ion Battery CO2-Sourced Poly(chloropropylene carbonate) with High Flame-Retardant Performance Influence of the Type of Precipitant on the Structure of Phase-inversion Polyamido-imide Membranes Advancements and Applications of 4D Bioprinting in Biomedical Science Bio-based Epoxy Composites Demonstrating High Temperature Breakdown Strength and Thermal Conductivity for High Voltage Insulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1