具有AP位点的多胺加合物:与DNA聚合酶和AP内切酶的相互作用。

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Chemical Research in Toxicology Pub Date : 2025-01-20 Epub Date: 2025-01-07 DOI:10.1021/acs.chemrestox.4c00312
Anna V Yudkina, Margarita M Amanova, Dmitry O Zharkov
{"title":"具有AP位点的多胺加合物:与DNA聚合酶和AP内切酶的相互作用。","authors":"Anna V Yudkina, Margarita M Amanova, Dmitry O Zharkov","doi":"10.1021/acs.chemrestox.4c00312","DOIUrl":null,"url":null,"abstract":"<p><p>Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine. Here we have investigated formation of AP site adducts with spermine and spermidine using sodium borohydride trapping technique and shown that they could persist in DNA for long enough to possibly interfere with cell's replication and transcription machinery. We demonstrate that both adducts placed internally into DNA are strongly blocking for DNA polymerases (Klenow fragment, phage RB69 polymerase, human polymerases β and κ) and direct dAMP incorporation in the rare bypass events. The internal AP site adducts with polyamines can be repaired, albeit rather slowly, by <i>Escherichia coli</i> endonuclease IV and yeast Apn1 but not by human AP endonuclease APE1 or <i>E. coli</i> exonuclease III, whereas the 3'-terminal adducts are substrates for the phosphodiesterase activities of all these AP endonucleases.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 1","pages":"102-114"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyamine Adducts with AP Sites: Interaction with DNA Polymerases and AP Endonucleases.\",\"authors\":\"Anna V Yudkina, Margarita M Amanova, Dmitry O Zharkov\",\"doi\":\"10.1021/acs.chemrestox.4c00312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine. Here we have investigated formation of AP site adducts with spermine and spermidine using sodium borohydride trapping technique and shown that they could persist in DNA for long enough to possibly interfere with cell's replication and transcription machinery. We demonstrate that both adducts placed internally into DNA are strongly blocking for DNA polymerases (Klenow fragment, phage RB69 polymerase, human polymerases β and κ) and direct dAMP incorporation in the rare bypass events. The internal AP site adducts with polyamines can be repaired, albeit rather slowly, by <i>Escherichia coli</i> endonuclease IV and yeast Apn1 but not by human AP endonuclease APE1 or <i>E. coli</i> exonuclease III, whereas the 3'-terminal adducts are substrates for the phosphodiesterase activities of all these AP endonucleases.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\"38 1\",\"pages\":\"102-114\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrestox.4c00312\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00312","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

生物多胺,如精胺、亚精胺和腐胺,是丰富的细胞内化合物,主要与核酸结合。由于其亲核性质,多胺很容易与apurinic/ ap嘧啶(AP)位点发生反应,这些位点是DNA中由于自发碱基丢失而不断形成的DNA损伤,也是碱基切除修复的中间产物。形成共价中间体,促进DNA链在AP位点的切割,随后被水解再生多胺。本研究利用硼氢化钠捕获技术研究了精胺和亚精胺的AP位点加合物的形成,并表明它们可以在DNA中持续存在足够长的时间,从而可能干扰细胞的复制和转录机制。我们证明,这两种内置于DNA中的加合物都强烈阻断DNA聚合酶(Klenow片段、噬菌体RB69聚合酶、人β和κ聚合酶),并在罕见的旁路事件中直接将dAMP掺入。大肠杆菌内切酶IV和酵母菌Apn1可以修复含有多胺的内部AP位点加合物,尽管速度很慢,但人AP内切酶APE1或大肠杆菌外切酶III却不能修复,而3'端加合物是所有这些AP内切酶磷酸二酯酶活性的底物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyamine Adducts with AP Sites: Interaction with DNA Polymerases and AP Endonucleases.

Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine. Here we have investigated formation of AP site adducts with spermine and spermidine using sodium borohydride trapping technique and shown that they could persist in DNA for long enough to possibly interfere with cell's replication and transcription machinery. We demonstrate that both adducts placed internally into DNA are strongly blocking for DNA polymerases (Klenow fragment, phage RB69 polymerase, human polymerases β and κ) and direct dAMP incorporation in the rare bypass events. The internal AP site adducts with polyamines can be repaired, albeit rather slowly, by Escherichia coli endonuclease IV and yeast Apn1 but not by human AP endonuclease APE1 or E. coli exonuclease III, whereas the 3'-terminal adducts are substrates for the phosphodiesterase activities of all these AP endonucleases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
期刊最新文献
Quantification of Flavors, Volatile Organic Compounds, Tobacco Markers, and Tobacco-Specific Nitrosamines in Heated Tobacco Products and Their Mainstream Aerosol. Nanoparticle-Mediated Embryotoxicity: Mechanisms of Chemical Toxicity and Implications for Biological Development. Systematic Investigation of CYP3A4 Using Side-by-Side Comparisons of Apo, Active Site, and Allosteric-Bound States. Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1