橄榄厂废水电助Fenton预处理后生物膜工艺的细菌群落动态。

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2025-01-17 DOI:10.1016/j.biortech.2025.132095
Marco De Carluccio, Raffaella Sabatino, Giulia Borgomaneiro, Andrea Di Cesare, Luigi Rizzo
{"title":"橄榄厂废水电助Fenton预处理后生物膜工艺的细菌群落动态。","authors":"Marco De Carluccio, Raffaella Sabatino, Giulia Borgomaneiro, Andrea Di Cesare, Luigi Rizzo","doi":"10.1016/j.biortech.2025.132095","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, the effect of the electro-assisted Fenton (EAF) process on the bacterial community of a moving bed biofilm reactor (MBBR) for olive mill wastewater (OMW) co-treatment with urban wastewater (UWW) was investigated. According to metagenomic analysis, pre-treatment by EAF, while removing total phenols (TPHs) up to 84 % ± 3 % and improving biodegradability of OMW from 0.38 to 0.62, led to the emergence of bacterial genera in the MBBR (R2) that were not detected under conditions without pre-treatment (R1). Indeed, in that condition, Candidatus Competibacter replaced Amaricoccus as dominant denitrifying bacteria. In both cases, the bacterial community composition matched with high simultaneous nitrification-denitrification efficiency (up to 98 %). Finally, Chlorobium (2.5-4.1 %), sulphate-reducing bacteria and Geobacter (up to 1.6 ± 0.4 %), anaerobic bacteria that utilise iron oxides, were observed exclusively with EAF application, suggesting potential for the development of new integrated microbial electrochemical systems.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132095"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial community dynamics in a biofilm-based process after electro-assisted Fenton pre-treatment of real olive mill wastewater.\",\"authors\":\"Marco De Carluccio, Raffaella Sabatino, Giulia Borgomaneiro, Andrea Di Cesare, Luigi Rizzo\",\"doi\":\"10.1016/j.biortech.2025.132095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, the effect of the electro-assisted Fenton (EAF) process on the bacterial community of a moving bed biofilm reactor (MBBR) for olive mill wastewater (OMW) co-treatment with urban wastewater (UWW) was investigated. According to metagenomic analysis, pre-treatment by EAF, while removing total phenols (TPHs) up to 84 % ± 3 % and improving biodegradability of OMW from 0.38 to 0.62, led to the emergence of bacterial genera in the MBBR (R2) that were not detected under conditions without pre-treatment (R1). Indeed, in that condition, Candidatus Competibacter replaced Amaricoccus as dominant denitrifying bacteria. In both cases, the bacterial community composition matched with high simultaneous nitrification-denitrification efficiency (up to 98 %). Finally, Chlorobium (2.5-4.1 %), sulphate-reducing bacteria and Geobacter (up to 1.6 ± 0.4 %), anaerobic bacteria that utilise iron oxides, were observed exclusively with EAF application, suggesting potential for the development of new integrated microbial electrochemical systems.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"132095\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2025.132095\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132095","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

研究了电辅助Fenton (EAF)工艺对橄榄厂废水(OMW)与城市污水(UWW)共处理移动床生物膜反应器(MBBR)细菌群落的影响。宏基因组分析显示,EAF预处理后,总酚(TPHs)去除率高达84 % ± 3 %,OMW的生物降解率从0.38提高到0.62,导致MBBR (R2)中出现了未经预处理(R1)条件下未检测到的细菌属。事实上,在这种情况下,竞争候选菌取代红球菌成为优势反硝化细菌。在这两种情况下,细菌群落组成与高同时硝化-反硝化效率相匹配(高达98 %)。最后,利用氧化铁的厌氧细菌Chlorobium(2.5-4.1 %)、硫酸盐还原细菌和Geobacter(高达1.6 ± 0.4 %)仅在EAF应用中被观察到,这表明了开发新的集成微生物电化学系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bacterial community dynamics in a biofilm-based process after electro-assisted Fenton pre-treatment of real olive mill wastewater.

In this work, the effect of the electro-assisted Fenton (EAF) process on the bacterial community of a moving bed biofilm reactor (MBBR) for olive mill wastewater (OMW) co-treatment with urban wastewater (UWW) was investigated. According to metagenomic analysis, pre-treatment by EAF, while removing total phenols (TPHs) up to 84 % ± 3 % and improving biodegradability of OMW from 0.38 to 0.62, led to the emergence of bacterial genera in the MBBR (R2) that were not detected under conditions without pre-treatment (R1). Indeed, in that condition, Candidatus Competibacter replaced Amaricoccus as dominant denitrifying bacteria. In both cases, the bacterial community composition matched with high simultaneous nitrification-denitrification efficiency (up to 98 %). Finally, Chlorobium (2.5-4.1 %), sulphate-reducing bacteria and Geobacter (up to 1.6 ± 0.4 %), anaerobic bacteria that utilise iron oxides, were observed exclusively with EAF application, suggesting potential for the development of new integrated microbial electrochemical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Sustainability assessment of blue hydrogen production through biomass gasification: A comparative analysis of thermal, solar, and wind energy sources. Economic and demonstrative pilot-scale harvesting of microalgae biomass via novel combined process of dissolved air flotation and screw-press filtration. Effect of inoculated sludge concentration on start-up of anammox reactor: Nitrogen removal performance and metabolic pathways. Enhancement of the yield of poly (ethylene terephthalate) hydrolase production using cell membrane protection strategy. Combining Tenebrio molitor frass with inorganic nitrogen fertilizer to improve soil properties, growth parameters, and nutrient content of Sonchus oleraceus crop.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1