白芍总苷激活PI3K/Akt通路减轻AngII诱导的心肌细胞肥大

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Biophysics Pub Date : 2025-01-16 DOI:10.1007/s12013-024-01616-y
Letian Sheng, Mengjiao Shen, Danyan Shao
{"title":"白芍总苷激活PI3K/Akt通路减轻AngII诱导的心肌细胞肥大","authors":"Letian Sheng, Mengjiao Shen, Danyan Shao","doi":"10.1007/s12013-024-01616-y","DOIUrl":null,"url":null,"abstract":"<p><p>Total glucosides of paeony (TGP) have been investigated for their effects on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). In this study, rat cardiomyocyte H9c2 cells were treated with various doses of TGP (0, 12.5, 25, 50, 100, 200, and 400 μmol/L), and cell viability was assessed using the MTT method to determine an optimal dose. To establish the cardiomyocyte hypertrophy model, Ang II (1 μmol/L) was used. The experimental groups included the control (Ctrl) group, the hypertrophy group (Ang II), the TGP treatment group (TGP+Ang II), and a combined treatment group (TGP+Ang II+LY), where LY294002, a PI3K/Akt inhibitor, was used. The surface area of H9c2 cells was analyzed using image analysis software, and apoptosis was assessed via flow cytometry. Western blotting was employed to evaluate markers related to cell proliferation, cardiac hypertrophy, apoptosis, and autophagy, as well as the phosphorylation of the PI3K/Akt pathway. The results revealed that Ang II inhibited cell viability and increased cell surface area, apoptosis, and autophagy, all of which were significantly reversed by TGP treatment. Moreover, the addition of LY294002 partially attenuated the effects of TGP, reducing cell viability and promoting hypertrophy, apoptosis, and autophagy. Additionally, Ang II reduced PI3K/Akt signaling activity, while TGP restored it. LY treatment reversed the effects of TGP and suppressed the PI3K/Akt pathway. In conclusion, TGP improves cardiomyocyte hypertrophy induced by Ang II by activating the PI3K/Akt signaling pathway.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total Glycosides of Paeony Activates PI3K/Akt Pathway to Alleviate Cardiomyocyte Hypertrophy Induced by AngII.\",\"authors\":\"Letian Sheng, Mengjiao Shen, Danyan Shao\",\"doi\":\"10.1007/s12013-024-01616-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Total glucosides of paeony (TGP) have been investigated for their effects on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). In this study, rat cardiomyocyte H9c2 cells were treated with various doses of TGP (0, 12.5, 25, 50, 100, 200, and 400 μmol/L), and cell viability was assessed using the MTT method to determine an optimal dose. To establish the cardiomyocyte hypertrophy model, Ang II (1 μmol/L) was used. The experimental groups included the control (Ctrl) group, the hypertrophy group (Ang II), the TGP treatment group (TGP+Ang II), and a combined treatment group (TGP+Ang II+LY), where LY294002, a PI3K/Akt inhibitor, was used. The surface area of H9c2 cells was analyzed using image analysis software, and apoptosis was assessed via flow cytometry. Western blotting was employed to evaluate markers related to cell proliferation, cardiac hypertrophy, apoptosis, and autophagy, as well as the phosphorylation of the PI3K/Akt pathway. The results revealed that Ang II inhibited cell viability and increased cell surface area, apoptosis, and autophagy, all of which were significantly reversed by TGP treatment. Moreover, the addition of LY294002 partially attenuated the effects of TGP, reducing cell viability and promoting hypertrophy, apoptosis, and autophagy. Additionally, Ang II reduced PI3K/Akt signaling activity, while TGP restored it. LY treatment reversed the effects of TGP and suppressed the PI3K/Akt pathway. In conclusion, TGP improves cardiomyocyte hypertrophy induced by Ang II by activating the PI3K/Akt signaling pathway.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01616-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01616-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本实验采用不同剂量(0、12.5、25、50、100、200、400 μmol/L)的芍药总苷(TGP)处理大鼠心肌细胞H9c2,并采用MTT法测定其对血管紧张素II (Ang II)诱导心肌细胞肥厚的影响。以1 μmol/L浓度的Angⅱ建立心肌细胞肥大模型。实验组分为对照组(Ctrl)、肥大组(Ang II)、TGP治疗组(TGP+Ang II)和联合治疗组(TGP+Ang II+LY),其中使用PI3K/Akt抑制剂LY294002。采用图像分析软件分析H9c2细胞表面积,流式细胞术检测细胞凋亡情况。Western blotting检测与细胞增殖、心肌肥大、凋亡、自噬相关的标志物,以及PI3K/Akt通路的磷酸化。结果显示,Ang II抑制细胞活力,增加细胞表面积,增加细胞凋亡和自噬,这些都被TGP处理显著逆转。此外,LY294002的加入部分减弱了TGP的作用,降低了细胞活力,促进了细胞肥大、凋亡和自噬。此外,Ang II降低PI3K/Akt信号活性,而TGP恢复其活性。LY治疗逆转了TGP的作用,抑制了PI3K/Akt通路。综上所述,TGP通过激活PI3K/Akt信号通路改善Ang II诱导的心肌细胞肥大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Total Glycosides of Paeony Activates PI3K/Akt Pathway to Alleviate Cardiomyocyte Hypertrophy Induced by AngII.

Total glucosides of paeony (TGP) have been investigated for their effects on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). In this study, rat cardiomyocyte H9c2 cells were treated with various doses of TGP (0, 12.5, 25, 50, 100, 200, and 400 μmol/L), and cell viability was assessed using the MTT method to determine an optimal dose. To establish the cardiomyocyte hypertrophy model, Ang II (1 μmol/L) was used. The experimental groups included the control (Ctrl) group, the hypertrophy group (Ang II), the TGP treatment group (TGP+Ang II), and a combined treatment group (TGP+Ang II+LY), where LY294002, a PI3K/Akt inhibitor, was used. The surface area of H9c2 cells was analyzed using image analysis software, and apoptosis was assessed via flow cytometry. Western blotting was employed to evaluate markers related to cell proliferation, cardiac hypertrophy, apoptosis, and autophagy, as well as the phosphorylation of the PI3K/Akt pathway. The results revealed that Ang II inhibited cell viability and increased cell surface area, apoptosis, and autophagy, all of which were significantly reversed by TGP treatment. Moreover, the addition of LY294002 partially attenuated the effects of TGP, reducing cell viability and promoting hypertrophy, apoptosis, and autophagy. Additionally, Ang II reduced PI3K/Akt signaling activity, while TGP restored it. LY treatment reversed the effects of TGP and suppressed the PI3K/Akt pathway. In conclusion, TGP improves cardiomyocyte hypertrophy induced by Ang II by activating the PI3K/Akt signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
期刊最新文献
Phyto-Fingerprinting of Putranjiva roxburghii Wall. Leaf Extract and its In Vitro Anti-Inflammatory Activity. Nutraceutical Impact of Pumpkin Seed Oil on Expression Levels of EZH-2 and KRT-14 Genes against DSS-induced Inflammatory Bowel Disease in the Rat Model. Nrf2/HO-1 Pathway Mediated Protective Effects of Hydrogen in a Model of Lung Transplantation Simulated by Rat Pulmonary Microvascular Endothelial Cells. Cancer Stem Cell Regulation as a Target of Therapeutic Intervention: Insights into Breast, Cervical and Lung Cancer. Hexagonal Hollow Core PCF-Based Blood Components Sensing: Design and Simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1