间充质干细胞递送负载cdkn1a的硫化铜纳米颗粒对骨关节炎成纤维细胞表型的调节

IF 5 2区 生物学 Q2 CELL BIOLOGY American journal of physiology. Cell physiology Pub Date : 2025-02-01 Epub Date: 2025-01-16 DOI:10.1152/ajpcell.00573.2024
Hong Liu, Ming Ji, Tao Yang, Shihua Zou, Xingan Qiu, Fangbiao Zhan, Jian Chen, Fei Yan, Fan Ding, Ping Li
{"title":"间充质干细胞递送负载cdkn1a的硫化铜纳米颗粒对骨关节炎成纤维细胞表型的调节","authors":"Hong Liu, Ming Ji, Tao Yang, Shihua Zou, Xingan Qiu, Fangbiao Zhan, Jian Chen, Fei Yan, Fan Ding, Ping Li","doi":"10.1152/ajpcell.00573.2024","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the regulation of fibroblast phenotypes by mesenchymal stem cells (MSCs) delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, principal component analysis (PCA) dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes. Pseudotime analysis was used to understand the developmental trajectory of fibroblasts, and GO/KEGG enrichment analyses highlighted biological processes related to fibroblast function. Transcriptomic data and WGCNA identified CDKN1A as a key regulatory gene. A biomimetic CuS@CDKN1A nanosystem was constructed and loaded into MSCs to create MSCs@CuS@CDKN1A. The characterization of this system confirmed its efficient cellular uptake by fibroblasts. In vitro experiments demonstrated that MSCs@CuS@CDKN1A significantly modulated fibroblast phenotypes and improved the structure, proliferation, reduced apoptosis, and enhanced migration of IL-1β-stimulated chondrocytes. In vivo, an OA mouse model was treated with intra-articular injections of MSCs@CuS@CDKN1A. Micro-CT scans revealed a significant reduction in osteophyte formation and improved joint space compared with control groups. Histological analysis, including H&E, Safranin O-Fast Green, and toluidine blue staining, confirmed improved cartilage integrity, whereas the International Osteoarthritis Research Society (OARSI) scoring indicated reduced disease severity. Immunofluorescence showed upregulated CDKN1A expression, decreased MMP13, and reduced α-SMA expression in fibroblast subtypes. Major organs exhibited no signs of toxicity, confirming the biocompatibility and safety of the treatment. These findings suggest that MSCs@CuS@CDKN1A can effectively regulate fibroblast activity and promote cartilage repair, providing a promising therapeutic strategy for OA treatment.<b>NEW & NOTEWORTHY</b> This study introduces MSCs@CuS@CDKN1A, a nanoengineered MSC platform that targets fibroblast phenotypes in osteoarthritis (OA). By modulating CDKN1A expression, this innovative approach not only enhances cartilage repair but also effectively mitigates fibroblast-driven inflammation, marking a significant advancement in OA therapeutics with demonstrated efficacy and biocompatibility.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C679-C698"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of fibroblast phenotype in osteoarthritis using CDKN1A-loaded copper sulfide nanoparticles delivered by mesenchymal stem cells.\",\"authors\":\"Hong Liu, Ming Ji, Tao Yang, Shihua Zou, Xingan Qiu, Fangbiao Zhan, Jian Chen, Fei Yan, Fan Ding, Ping Li\",\"doi\":\"10.1152/ajpcell.00573.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the regulation of fibroblast phenotypes by mesenchymal stem cells (MSCs) delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, principal component analysis (PCA) dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes. Pseudotime analysis was used to understand the developmental trajectory of fibroblasts, and GO/KEGG enrichment analyses highlighted biological processes related to fibroblast function. Transcriptomic data and WGCNA identified CDKN1A as a key regulatory gene. A biomimetic CuS@CDKN1A nanosystem was constructed and loaded into MSCs to create MSCs@CuS@CDKN1A. The characterization of this system confirmed its efficient cellular uptake by fibroblasts. In vitro experiments demonstrated that MSCs@CuS@CDKN1A significantly modulated fibroblast phenotypes and improved the structure, proliferation, reduced apoptosis, and enhanced migration of IL-1β-stimulated chondrocytes. In vivo, an OA mouse model was treated with intra-articular injections of MSCs@CuS@CDKN1A. Micro-CT scans revealed a significant reduction in osteophyte formation and improved joint space compared with control groups. Histological analysis, including H&E, Safranin O-Fast Green, and toluidine blue staining, confirmed improved cartilage integrity, whereas the International Osteoarthritis Research Society (OARSI) scoring indicated reduced disease severity. Immunofluorescence showed upregulated CDKN1A expression, decreased MMP13, and reduced α-SMA expression in fibroblast subtypes. Major organs exhibited no signs of toxicity, confirming the biocompatibility and safety of the treatment. These findings suggest that MSCs@CuS@CDKN1A can effectively regulate fibroblast activity and promote cartilage repair, providing a promising therapeutic strategy for OA treatment.<b>NEW & NOTEWORTHY</b> This study introduces MSCs@CuS@CDKN1A, a nanoengineered MSC platform that targets fibroblast phenotypes in osteoarthritis (OA). By modulating CDKN1A expression, this innovative approach not only enhances cartilage repair but also effectively mitigates fibroblast-driven inflammation, marking a significant advancement in OA therapeutics with demonstrated efficacy and biocompatibility.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C679-C698\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00573.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00573.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨MSCs递送装载CDKN1A质粒的硫化铜纳米颗粒(cu)对成纤维细胞表型的调节及其在骨关节炎(OA)期间软骨修复中的作用。分析来自GEO数据库的单细胞RNA测序数据,以确定OA免疫微环境中的亚群。通过质量控制、过滤、PCA降维和tSNE聚类来获得详细的细胞亚型。伪时间分析用于了解成纤维细胞的发育轨迹,GO/KEGG富集分析强调了与成纤维细胞功能相关的生物学过程。转录组学数据和WGCNA鉴定CDKN1A为关键调控基因。构建了一个仿生CuS@CDKN1A纳米系统并将其加载到MSCs中以创建MSCs@CuS@CDKN1A。该系统的特性证实了成纤维细胞对其有效的细胞摄取。体外实验表明MSCs@CuS@CDKN1A显著调节成纤维细胞表型,改善il -1β刺激的软骨细胞的结构、增殖、减少凋亡和增强迁移。在体内,用关节内注射MSCs@CuS@CDKN1A治疗OA小鼠模型。Micro-CT扫描显示,与对照组相比,骨赘形成明显减少,关节间隙改善。组织学分析,包括H&E、Safranin O-Fast Green和甲苯胺蓝染色,证实软骨完整性改善,而OARSI评分表明疾病严重程度降低。免疫荧光显示成纤维细胞亚型CDKN1A表达上调,MMP13表达降低,α-SMA表达降低。主要器官未显示出毒性迹象,证实了治疗的生物相容性和安全性。这些发现表明MSCs@CuS@CDKN1A可以有效调节成纤维细胞活性,促进软骨修复,为OA治疗提供了一个有希望的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulation of fibroblast phenotype in osteoarthritis using CDKN1A-loaded copper sulfide nanoparticles delivered by mesenchymal stem cells.

This study aimed to investigate the regulation of fibroblast phenotypes by mesenchymal stem cells (MSCs) delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, principal component analysis (PCA) dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes. Pseudotime analysis was used to understand the developmental trajectory of fibroblasts, and GO/KEGG enrichment analyses highlighted biological processes related to fibroblast function. Transcriptomic data and WGCNA identified CDKN1A as a key regulatory gene. A biomimetic CuS@CDKN1A nanosystem was constructed and loaded into MSCs to create MSCs@CuS@CDKN1A. The characterization of this system confirmed its efficient cellular uptake by fibroblasts. In vitro experiments demonstrated that MSCs@CuS@CDKN1A significantly modulated fibroblast phenotypes and improved the structure, proliferation, reduced apoptosis, and enhanced migration of IL-1β-stimulated chondrocytes. In vivo, an OA mouse model was treated with intra-articular injections of MSCs@CuS@CDKN1A. Micro-CT scans revealed a significant reduction in osteophyte formation and improved joint space compared with control groups. Histological analysis, including H&E, Safranin O-Fast Green, and toluidine blue staining, confirmed improved cartilage integrity, whereas the International Osteoarthritis Research Society (OARSI) scoring indicated reduced disease severity. Immunofluorescence showed upregulated CDKN1A expression, decreased MMP13, and reduced α-SMA expression in fibroblast subtypes. Major organs exhibited no signs of toxicity, confirming the biocompatibility and safety of the treatment. These findings suggest that MSCs@CuS@CDKN1A can effectively regulate fibroblast activity and promote cartilage repair, providing a promising therapeutic strategy for OA treatment.NEW & NOTEWORTHY This study introduces MSCs@CuS@CDKN1A, a nanoengineered MSC platform that targets fibroblast phenotypes in osteoarthritis (OA). By modulating CDKN1A expression, this innovative approach not only enhances cartilage repair but also effectively mitigates fibroblast-driven inflammation, marking a significant advancement in OA therapeutics with demonstrated efficacy and biocompatibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
期刊最新文献
An Endogenous Aryl Hydrocarbon Receptor Ligand Dysregulates Endothelial Functions, Transcriptome, and Phosphoproteome. Effects of oral γ-aminobutyric acid intake on muscle regeneration in diabetic mice. Inflammation induced PFKFB3-mediated glycolysis promoting myometrium contraction through the PI3K-Akt-mTOR pathway in preterm birth mice. Cellular mechanisms underlying overreaching in skeletal muscle following excessive high-intensity interval training. Histone lactylation-mediated overexpression of RASD2 promotes endometriosis progression via upregulating the SUMOylation of CTPS1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1