快速和自动生成多位点系统发生树。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2025-01-18 DOI:10.1186/s12859-025-06035-1
T J Booth, S Shaw, P Cruz-Morales, T Weber
{"title":"快速和自动生成多位点系统发生树。","authors":"T J Booth, S Shaw, P Cruz-Morales, T Weber","doi":"10.1186/s12859-025-06035-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The increasing amount of genomic data calls for tools that can create genome-scale phylogenies quickly and efficiently. Existing tools rely on large reference databases or require lengthy de novo calculations to identify orthologues, meaning that they have long run times and are limited in their taxonomic scope. To address this, we created getphylo, a python tool for the rapid generation of phylogenetic trees de novo from annotated sequences.</p><p><strong>Results: </strong>We present getphylo (Genbank to Phylogeny), a tool that automatically builds phylogenetic trees from annotated genomes alone. Orthologues are identified heuristically by searching for singletons (single copy genes) across all input genomes and the phylogeny is inferred from a concatenated alignment of all coding sequences by maximum likelihood. We performed a thorough benchmarking of getphylo against two existing tools, autoMLST and GTDB-tk, to show that it can produce trees of comparable quality in a fraction of the time. We also demonstrate the flexibility of getphylo across four case studies including bacterial and eukaryotic genomes, and biosynthetic gene clusters.</p><p><strong>Conclusions: </strong>getphylo is a quick and reliable tool for the automated generation of genome-scale phylogenetic trees. getphylo can produce phylogenies comparable to other software in a fraction of the time, without the need large local databases or intense computation. getphylo can rapidly identify orthologues from a wide variety of datasets regardless of taxonomic or genomic scope. The usability, speed, flexibility of getphylo makes it a valuable addition to the phylogenetics toolkit.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"21"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748604/pdf/","citationCount":"0","resultStr":"{\"title\":\"getphylo: rapid and automatic generation of multi-locus phylogenetic trees.\",\"authors\":\"T J Booth, S Shaw, P Cruz-Morales, T Weber\",\"doi\":\"10.1186/s12859-025-06035-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The increasing amount of genomic data calls for tools that can create genome-scale phylogenies quickly and efficiently. Existing tools rely on large reference databases or require lengthy de novo calculations to identify orthologues, meaning that they have long run times and are limited in their taxonomic scope. To address this, we created getphylo, a python tool for the rapid generation of phylogenetic trees de novo from annotated sequences.</p><p><strong>Results: </strong>We present getphylo (Genbank to Phylogeny), a tool that automatically builds phylogenetic trees from annotated genomes alone. Orthologues are identified heuristically by searching for singletons (single copy genes) across all input genomes and the phylogeny is inferred from a concatenated alignment of all coding sequences by maximum likelihood. We performed a thorough benchmarking of getphylo against two existing tools, autoMLST and GTDB-tk, to show that it can produce trees of comparable quality in a fraction of the time. We also demonstrate the flexibility of getphylo across four case studies including bacterial and eukaryotic genomes, and biosynthetic gene clusters.</p><p><strong>Conclusions: </strong>getphylo is a quick and reliable tool for the automated generation of genome-scale phylogenetic trees. getphylo can produce phylogenies comparable to other software in a fraction of the time, without the need large local databases or intense computation. getphylo can rapidly identify orthologues from a wide variety of datasets regardless of taxonomic or genomic scope. The usability, speed, flexibility of getphylo makes it a valuable addition to the phylogenetics toolkit.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"21\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06035-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06035-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:越来越多的基因组数据需要能够快速有效地创建基因组级系统发育的工具。现有的工具依赖于大型参考数据库,或者需要冗长的从头计算来识别同源物,这意味着它们运行时间长,分类范围有限。为了解决这个问题,我们创建了getphylo,这是一个python工具,用于从注释序列从头快速生成系统发育树。结果:我们提出了getphylo (Genbank to Phylogeny),这是一个自动从注释基因组构建系统发生树的工具。通过在所有输入基因组中搜索单基因(单拷贝基因),启发式地识别同源物,并通过最大似然法从所有编码序列的串联比对中推断出系统发育。我们针对两个现有工具(autoMLST和GTDB-tk)对getphylo进行了全面的基准测试,以表明它可以在很短的时间内生成具有相当质量的树。我们还展示了getphylo在四个案例研究中的灵活性,包括细菌和真核生物基因组,以及生物合成基因簇。结论:getphylo是一种快速、可靠的自动生成基因组级系统发育树的工具。Getphylo可以在很短的时间内生成与其他软件相当的系统发育,而不需要大型本地数据库或密集的计算。Getphylo可以快速识别同源物从各种各样的数据集,无论分类学或基因组范围。getphylo的可用性、速度和灵活性使其成为系统遗传学工具包的一个有价值的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
getphylo: rapid and automatic generation of multi-locus phylogenetic trees.

Background: The increasing amount of genomic data calls for tools that can create genome-scale phylogenies quickly and efficiently. Existing tools rely on large reference databases or require lengthy de novo calculations to identify orthologues, meaning that they have long run times and are limited in their taxonomic scope. To address this, we created getphylo, a python tool for the rapid generation of phylogenetic trees de novo from annotated sequences.

Results: We present getphylo (Genbank to Phylogeny), a tool that automatically builds phylogenetic trees from annotated genomes alone. Orthologues are identified heuristically by searching for singletons (single copy genes) across all input genomes and the phylogeny is inferred from a concatenated alignment of all coding sequences by maximum likelihood. We performed a thorough benchmarking of getphylo against two existing tools, autoMLST and GTDB-tk, to show that it can produce trees of comparable quality in a fraction of the time. We also demonstrate the flexibility of getphylo across four case studies including bacterial and eukaryotic genomes, and biosynthetic gene clusters.

Conclusions: getphylo is a quick and reliable tool for the automated generation of genome-scale phylogenetic trees. getphylo can produce phylogenies comparable to other software in a fraction of the time, without the need large local databases or intense computation. getphylo can rapidly identify orthologues from a wide variety of datasets regardless of taxonomic or genomic scope. The usability, speed, flexibility of getphylo makes it a valuable addition to the phylogenetics toolkit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
BioLake: an RNA expression analysis framework for prostate cancer biomarker powered by data lakehouse. CellMAP: an open-source software tool to batch-process cell topography and stiffness maps collected with an atomic force microscope. Accurate assembly of full-length consensus for viral quasispecies. Flexible analysis of spatial transcriptomics data (FAST): a deconvolution approach. Biomedical named entity recognition using improved green anaconda-assisted Bi-GRU-based hierarchical ResNet model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1