纳米载体载药联合治疗阿尔茨海默病的前景研究。

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current pharmaceutical design Pub Date : 2025-01-15 DOI:10.2174/0113816128348877241202053633
Saif Ahmad Khan, Zufika Qamar, Aashish Rohilla, Pirthi Pal Singh, Suhel Parvez, Sanjula Baboota, Javed Ali
{"title":"纳米载体载药联合治疗阿尔茨海默病的前景研究。","authors":"Saif Ahmad Khan, Zufika Qamar, Aashish Rohilla, Pirthi Pal Singh, Suhel Parvez, Sanjula Baboota, Javed Ali","doi":"10.2174/0113816128348877241202053633","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a debilitating condition that significantly affects the elderly. Early diagnosis is not only critical for improving patient outcomes but also directly influences the success of emerging therapeutic interventions. A therapeutic strategy targeting only one pathogenic mechanism is unlikely to be very effective, as there is increasing evidence that AD does not have a single pathogenic cause. Therefore, combining medications or developing therapies that address multiple pathways may be beneficial. Most clinical trials can be classified under added therapy rather than combination therapy. Effective treatment of AD likely requires targeting multiple mechanisms, such as amyloid-beta (Aβ) and tau pathology. However, many medications face challenges, including poor solubility, low permeability, and the inability to cross the blood- -brain barrier (BBB). This is where nanocarriers come into play, as they can be loaded with these medications to facilitate targeted drug delivery. This approach enhances the pharmacokinetic profile of drugs in both the blood and the brain. Therefore, this paper provides a concise overview of the use of various nanocarriers loaded with drug combinations for treating AD.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospective Utilization of Nanocarriers Loaded with Drug Combination for Treating Alzheimer's Disease.\",\"authors\":\"Saif Ahmad Khan, Zufika Qamar, Aashish Rohilla, Pirthi Pal Singh, Suhel Parvez, Sanjula Baboota, Javed Ali\",\"doi\":\"10.2174/0113816128348877241202053633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a debilitating condition that significantly affects the elderly. Early diagnosis is not only critical for improving patient outcomes but also directly influences the success of emerging therapeutic interventions. A therapeutic strategy targeting only one pathogenic mechanism is unlikely to be very effective, as there is increasing evidence that AD does not have a single pathogenic cause. Therefore, combining medications or developing therapies that address multiple pathways may be beneficial. Most clinical trials can be classified under added therapy rather than combination therapy. Effective treatment of AD likely requires targeting multiple mechanisms, such as amyloid-beta (Aβ) and tau pathology. However, many medications face challenges, including poor solubility, low permeability, and the inability to cross the blood- -brain barrier (BBB). This is where nanocarriers come into play, as they can be loaded with these medications to facilitate targeted drug delivery. This approach enhances the pharmacokinetic profile of drugs in both the blood and the brain. Therefore, this paper provides a concise overview of the use of various nanocarriers loaded with drug combinations for treating AD.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128348877241202053633\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128348877241202053633","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种严重影响老年人的衰弱性疾病。早期诊断不仅对改善患者预后至关重要,而且还直接影响新兴治疗干预措施的成功。仅针对一种致病机制的治疗策略不太可能非常有效,因为越来越多的证据表明AD没有单一的致病原因。因此,联合用药或开发针对多种途径的疗法可能是有益的。大多数临床试验可以归类为附加治疗而不是联合治疗。AD的有效治疗可能需要针对多种机制,如淀粉样蛋白- β (Aβ)和tau病理。然而,许多药物面临挑战,包括溶解度差,渗透性低,无法穿过血脑屏障(BBB)。这就是纳米载体发挥作用的地方,因为它们可以装载这些药物,以促进靶向药物的递送。这种方法增强了药物在血液和大脑中的药代动力学特征。因此,本文简要概述了各种载药纳米载体在治疗AD中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prospective Utilization of Nanocarriers Loaded with Drug Combination for Treating Alzheimer's Disease.

Alzheimer's disease (AD) is a debilitating condition that significantly affects the elderly. Early diagnosis is not only critical for improving patient outcomes but also directly influences the success of emerging therapeutic interventions. A therapeutic strategy targeting only one pathogenic mechanism is unlikely to be very effective, as there is increasing evidence that AD does not have a single pathogenic cause. Therefore, combining medications or developing therapies that address multiple pathways may be beneficial. Most clinical trials can be classified under added therapy rather than combination therapy. Effective treatment of AD likely requires targeting multiple mechanisms, such as amyloid-beta (Aβ) and tau pathology. However, many medications face challenges, including poor solubility, low permeability, and the inability to cross the blood- -brain barrier (BBB). This is where nanocarriers come into play, as they can be loaded with these medications to facilitate targeted drug delivery. This approach enhances the pharmacokinetic profile of drugs in both the blood and the brain. Therefore, this paper provides a concise overview of the use of various nanocarriers loaded with drug combinations for treating AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
期刊最新文献
An Overview of Microneedles as a Drug Delivery System. Cancer Drug Targeting: Molecular Mechanism, Approaches, and Regulatory Framework. Systems Pharmacology-based Drug Discovery and Active Mechanism of Ganoderma lucidum Triterpenoids for Type 2 Diabetes Mellitus by Integrating Network Pharmacology and Molecular Docking. Eprosartan Reduces Inflammation and Oxidative Stress in Ethanol-induced Hepatotoxicity. Advances in Machine Learning Models for Healthcare Applications: A Precise and Patient-Centric Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1