食品物理性质对口服药物吸收的影响综述

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL Drug Design, Development and Therapy Pub Date : 2025-01-16 eCollection Date: 2025-01-01 DOI:10.2147/DDDT.S497515
Ziyang Wang, Wen Xu, Dan Liu, Xiuqi Li, Shupeng Liu, Xiaofei Wu, Hongyun Wang
{"title":"食品物理性质对口服药物吸收的影响综述","authors":"Ziyang Wang, Wen Xu, Dan Liu, Xiuqi Li, Shupeng Liu, Xiaofei Wu, Hongyun Wang","doi":"10.2147/DDDT.S497515","DOIUrl":null,"url":null,"abstract":"<p><p>Food-Drug Interaction (FDI) refers to the phenomenon where food affects the pharmacokinetic or pharmacodynamic characteristics of a drug, significantly altering the drug's absorption rate or absorption extent. These Interactions are considered as a primary determinant in influencing the bioavailability of orally administered drugs within the gastrointestinal tract. The impact of food on drug absorption is complex and multifaceted, potentially involving alterations in gastrointestinal physiology, increases in splanchnic blood flow rates, and shifts in the gut microbiota's composition. Up to now, extensive research has focused on the interactions between food composition (such as proteins, fats, and vitamins) and drug absorption. In contrast, the impact of food physical properties (such as viscosity, volume, and pH) has received less attention in drug development. This article reviewed the impact of food properties on oral drug absorption based on a comprehensive literature search, focusing on the influence of food volume and food viscosity. From the perspective of pharmacokinetics, we examined interaction trends between food properties and drugs across different classification based on the Biopharmaceutics Classification System (BCS). In addition, we introduced the practical application of physiologically based pharmacokinetic (PBPK) modeling in predicting oral drug absorption under the influence of food Properties.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"267-280"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745047/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of Food Physical Properties on Oral Drug Absorption: A Comprehensive Review.\",\"authors\":\"Ziyang Wang, Wen Xu, Dan Liu, Xiuqi Li, Shupeng Liu, Xiaofei Wu, Hongyun Wang\",\"doi\":\"10.2147/DDDT.S497515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Food-Drug Interaction (FDI) refers to the phenomenon where food affects the pharmacokinetic or pharmacodynamic characteristics of a drug, significantly altering the drug's absorption rate or absorption extent. These Interactions are considered as a primary determinant in influencing the bioavailability of orally administered drugs within the gastrointestinal tract. The impact of food on drug absorption is complex and multifaceted, potentially involving alterations in gastrointestinal physiology, increases in splanchnic blood flow rates, and shifts in the gut microbiota's composition. Up to now, extensive research has focused on the interactions between food composition (such as proteins, fats, and vitamins) and drug absorption. In contrast, the impact of food physical properties (such as viscosity, volume, and pH) has received less attention in drug development. This article reviewed the impact of food properties on oral drug absorption based on a comprehensive literature search, focusing on the influence of food volume and food viscosity. From the perspective of pharmacokinetics, we examined interaction trends between food properties and drugs across different classification based on the Biopharmaceutics Classification System (BCS). In addition, we introduced the practical application of physiologically based pharmacokinetic (PBPK) modeling in predicting oral drug absorption under the influence of food Properties.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"19 \",\"pages\":\"267-280\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745047/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S497515\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S497515","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

食品-药物相互作用(food - drug Interaction, FDI)是指食物影响药物的药代动力学或药效学特性,从而显著改变药物的吸收速度或吸收程度的现象。这些相互作用被认为是影响口服药物在胃肠道内生物利用度的主要决定因素。食物对药物吸收的影响是复杂和多方面的,可能涉及胃肠道生理学的改变、内脏血流速率的增加和肠道微生物群组成的变化。到目前为止,广泛的研究集中在食物成分(如蛋白质、脂肪和维生素)与药物吸收之间的相互作用上。相比之下,食品物理性质(如粘度、体积和pH值)的影响在药物开发中受到的关注较少。本文在全面查阅文献的基础上,综述了食品性质对口服药物吸收的影响,重点介绍了食品体积和食品粘度的影响。从药代动力学的角度,基于生物制药分类系统(BCS),研究了不同分类下食品性质与药物之间的相互作用趋势。此外,我们还介绍了基于生理的药代动力学(PBPK)模型在预测食物性质影响下口服药物吸收方面的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Food Physical Properties on Oral Drug Absorption: A Comprehensive Review.

Food-Drug Interaction (FDI) refers to the phenomenon where food affects the pharmacokinetic or pharmacodynamic characteristics of a drug, significantly altering the drug's absorption rate or absorption extent. These Interactions are considered as a primary determinant in influencing the bioavailability of orally administered drugs within the gastrointestinal tract. The impact of food on drug absorption is complex and multifaceted, potentially involving alterations in gastrointestinal physiology, increases in splanchnic blood flow rates, and shifts in the gut microbiota's composition. Up to now, extensive research has focused on the interactions between food composition (such as proteins, fats, and vitamins) and drug absorption. In contrast, the impact of food physical properties (such as viscosity, volume, and pH) has received less attention in drug development. This article reviewed the impact of food properties on oral drug absorption based on a comprehensive literature search, focusing on the influence of food volume and food viscosity. From the perspective of pharmacokinetics, we examined interaction trends between food properties and drugs across different classification based on the Biopharmaceutics Classification System (BCS). In addition, we introduced the practical application of physiologically based pharmacokinetic (PBPK) modeling in predicting oral drug absorption under the influence of food Properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
期刊最新文献
Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Population Pharmacokinetic of Epidural Sufentanil in Labouring Women: A Multicentric, Prospective, Observational Study. Determination of the MEC90 of Oxycodone for Preventing Perioperative Shivering in Pregnant Patients Undergoing Caesarean Delivery with Neuraxial Anaesthesia: A Biased-Coin up-and-Down Sequential Allocation Trial. Effects of Ciprofol and Propofol General Anesthesia on Postoperative Recovery Quality in Patients Undergoing Ureteroscopy: A Randomized, Controlled, Double-Blind Clinical Trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1