网络药理学结合代谢组学揭示养血容金丸对2型糖尿病大鼠周围神经病变的作用机制。

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL Drug Design, Development and Therapy Pub Date : 2025-01-16 eCollection Date: 2025-01-01 DOI:10.2147/DDDT.S473146
Ran Jin, Hailuan Pei, Feng Yue, Xiaodi Zhang, Zhicong Zhang, Yi Xu, Jinsheng Li
{"title":"网络药理学结合代谢组学揭示养血容金丸对2型糖尿病大鼠周围神经病变的作用机制。","authors":"Ran Jin, Hailuan Pei, Feng Yue, Xiaodi Zhang, Zhicong Zhang, Yi Xu, Jinsheng Li","doi":"10.2147/DDDT.S473146","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN.</p><p><strong>Methods: </strong>In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks. The body weight, thermal withdrawal latency (TWL), sciatic motor nerve conduction velocity (MNCV), biochemical indexes, pathological sections of sciatic nerve, oxidative stress factors and the expression levels of neuroprotection-related proteins were detected. Metabolomics technology was used to analyze the potential biomarkers and potential metabolic pathways in DPN treated with YXRJP.</p><p><strong>Results: </strong>The results of network pharmacology showed that YXRJP could treat DPN through baicalin, β-sitosterol, 7-methoxy-2-methylisoflavone, aloe-emodin and luteolin on insulin resistance, Toll-like receptor (TLR), tumor necrosis factor (TNF) and other signaling pathways. YXRJP can prolong the TWL, increase the MNCV of the sciatic nerve, alleviate the injury of the sciatic nerve, reduce the levels of triglyceride (TG), improve the expression of Insulin-like growth factor 1 (IGF-1) protein in the sciatic nerve, and reduce the expression of protein kinase B (AKT) protein. Metabolomics results showed that the potential metabolic pathways of YXRJP in the treatment of DPN mainly involved amino acid metabolism such as arginine, alanine, aspartic acid, lipid metabolism and nucleotide metabolism.</p><p><strong>Conclusion: </strong>YXRJP can effectively improve the symptoms of DPN rats and reduce nerve damage. The effects are mainly related to reducing oxidative stress injury, promoting the expression of neuroprotection-related proteins, reducing the expression of inflammation-related proteins, and affecting amino acid metabolism, lipid metabolism, and nucleotide metabolism pathways. Our findings revealed that YXRJP has a good therapeutic potential for DPN, which provides a reference for further studies on YXRJP.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"325-347"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745066/pdf/","citationCount":"0","resultStr":"{\"title\":\"Network Pharmacology Combined With Metabolomics Reveals the Mechanism of Yangxuerongjin Pill Against Type 2 Diabetic Peripheral Neuropathy in Rats.\",\"authors\":\"Ran Jin, Hailuan Pei, Feng Yue, Xiaodi Zhang, Zhicong Zhang, Yi Xu, Jinsheng Li\",\"doi\":\"10.2147/DDDT.S473146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN.</p><p><strong>Methods: </strong>In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks. The body weight, thermal withdrawal latency (TWL), sciatic motor nerve conduction velocity (MNCV), biochemical indexes, pathological sections of sciatic nerve, oxidative stress factors and the expression levels of neuroprotection-related proteins were detected. Metabolomics technology was used to analyze the potential biomarkers and potential metabolic pathways in DPN treated with YXRJP.</p><p><strong>Results: </strong>The results of network pharmacology showed that YXRJP could treat DPN through baicalin, β-sitosterol, 7-methoxy-2-methylisoflavone, aloe-emodin and luteolin on insulin resistance, Toll-like receptor (TLR), tumor necrosis factor (TNF) and other signaling pathways. YXRJP can prolong the TWL, increase the MNCV of the sciatic nerve, alleviate the injury of the sciatic nerve, reduce the levels of triglyceride (TG), improve the expression of Insulin-like growth factor 1 (IGF-1) protein in the sciatic nerve, and reduce the expression of protein kinase B (AKT) protein. Metabolomics results showed that the potential metabolic pathways of YXRJP in the treatment of DPN mainly involved amino acid metabolism such as arginine, alanine, aspartic acid, lipid metabolism and nucleotide metabolism.</p><p><strong>Conclusion: </strong>YXRJP can effectively improve the symptoms of DPN rats and reduce nerve damage. The effects are mainly related to reducing oxidative stress injury, promoting the expression of neuroprotection-related proteins, reducing the expression of inflammation-related proteins, and affecting amino acid metabolism, lipid metabolism, and nucleotide metabolism pathways. Our findings revealed that YXRJP has a good therapeutic potential for DPN, which provides a reference for further studies on YXRJP.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"19 \",\"pages\":\"325-347\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745066/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S473146\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S473146","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在通过网络药理学和代谢组学技术结合动物实验,探讨养血容金丸(YXRJP)治疗糖尿病周围神经病变(DPN)的作用机制,为治疗DPN提供科学依据。方法:本研究采用网络药理学分析方法,鉴定可能与DPN作用有关的活性化合物、核心靶点和信号通路。采用高脂饲料联合链脲佐菌素(STZ)注射建立DPN模型,给药12周。检测大鼠体重、热停药潜伏期(TWL)、坐骨运动神经传导速度(MNCV)、生化指标、坐骨神经病理切片、氧化应激因子及神经保护相关蛋白表达水平。利用代谢组学技术分析YXRJP治疗DPN的潜在生物标志物和潜在代谢途径。结果:网络药理学结果显示,YXRJP可通过黄芩苷、β-谷甾醇、7-甲氧基-2-甲基异黄酮、芦荟大黄素和木草素对胰岛素抵抗、toll样受体(TLR)、肿瘤坏死因子(TNF)等信号通路治疗DPN。YXRJP可延长坐骨神经TWL,增加坐骨神经MNCV,减轻坐骨神经损伤,降低甘油三酯(TG)水平,提高坐骨神经中胰岛素样生长因子1 (IGF-1)蛋白表达,降低蛋白激酶B (AKT)蛋白表达。代谢组学结果显示,YXRJP治疗DPN的潜在代谢途径主要涉及氨基酸代谢,如精氨酸、丙氨酸、天冬氨酸、脂质代谢和核苷酸代谢。结论:YXRJP能有效改善DPN大鼠的症状,减轻神经损伤。其作用主要与减轻氧化应激损伤,促进神经保护相关蛋白的表达,降低炎症相关蛋白的表达,影响氨基酸代谢、脂质代谢和核苷酸代谢途径有关。我们的研究结果表明,YXRJP对DPN具有良好的治疗潜力,为进一步研究YXRJP提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Pharmacology Combined With Metabolomics Reveals the Mechanism of Yangxuerongjin Pill Against Type 2 Diabetic Peripheral Neuropathy in Rats.

Purpose: This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN.

Methods: In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks. The body weight, thermal withdrawal latency (TWL), sciatic motor nerve conduction velocity (MNCV), biochemical indexes, pathological sections of sciatic nerve, oxidative stress factors and the expression levels of neuroprotection-related proteins were detected. Metabolomics technology was used to analyze the potential biomarkers and potential metabolic pathways in DPN treated with YXRJP.

Results: The results of network pharmacology showed that YXRJP could treat DPN through baicalin, β-sitosterol, 7-methoxy-2-methylisoflavone, aloe-emodin and luteolin on insulin resistance, Toll-like receptor (TLR), tumor necrosis factor (TNF) and other signaling pathways. YXRJP can prolong the TWL, increase the MNCV of the sciatic nerve, alleviate the injury of the sciatic nerve, reduce the levels of triglyceride (TG), improve the expression of Insulin-like growth factor 1 (IGF-1) protein in the sciatic nerve, and reduce the expression of protein kinase B (AKT) protein. Metabolomics results showed that the potential metabolic pathways of YXRJP in the treatment of DPN mainly involved amino acid metabolism such as arginine, alanine, aspartic acid, lipid metabolism and nucleotide metabolism.

Conclusion: YXRJP can effectively improve the symptoms of DPN rats and reduce nerve damage. The effects are mainly related to reducing oxidative stress injury, promoting the expression of neuroprotection-related proteins, reducing the expression of inflammation-related proteins, and affecting amino acid metabolism, lipid metabolism, and nucleotide metabolism pathways. Our findings revealed that YXRJP has a good therapeutic potential for DPN, which provides a reference for further studies on YXRJP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
期刊最新文献
Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Population Pharmacokinetic of Epidural Sufentanil in Labouring Women: A Multicentric, Prospective, Observational Study. Determination of the MEC90 of Oxycodone for Preventing Perioperative Shivering in Pregnant Patients Undergoing Caesarean Delivery with Neuraxial Anaesthesia: A Biased-Coin up-and-Down Sequential Allocation Trial. Effects of Ciprofol and Propofol General Anesthesia on Postoperative Recovery Quality in Patients Undergoing Ureteroscopy: A Randomized, Controlled, Double-Blind Clinical Trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1