苍白突-列变异性和随机性是区分帕金森病和颈肌张力障碍最重要的特征。

IF 2.7 4区 医学 Q3 NEUROSCIENCES European Journal of Neuroscience Pub Date : 2025-01-20 DOI:10.1111/ejn.16653
A. Sedov, P. Pavlovsky, V. Filyushkina, I. Dzhalagoniya, U. Semenova, N. Zakharov, A. Gamaleya, A. Tomskiy, Aasef G. Shaikh
{"title":"苍白突-列变异性和随机性是区分帕金森病和颈肌张力障碍最重要的特征。","authors":"A. Sedov,&nbsp;P. Pavlovsky,&nbsp;V. Filyushkina,&nbsp;I. Dzhalagoniya,&nbsp;U. Semenova,&nbsp;N. Zakharov,&nbsp;A. Gamaleya,&nbsp;A. Tomskiy,&nbsp;Aasef G. Shaikh","doi":"10.1111/ejn.16653","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Movement disorders such as Parkinson's disease (PD) and cervical dystonia (CD) are associated with abnormal neuronal activity in the globus pallidus internus (GPi). Reduced firing rate and presence of spiking bursts are typical for CD, whereas PD is characterized by high frequency tonic activity. This research aims to identify the most important pallidal spiking parameters to classify these conditions. We analysed the single unit activity of the globus pallidus externus (GPe) and internus (GPi) in 11 CD and 10 PD patients who underwent standard-of-care DBS implantation. We compared firing rate, firing pattern and oscillatory characteristics of tonic, burst and pause cells and used logistic regression and random forest models to classify patients according to their pallidal activity. In the GPi, we discovered prevalence of high firing rate tonic cells in patients with PD, whereas in dystonia, burst neurons with high firing rate were predominant. GPi pause cells were mostly observed in CD patients and exhibited less spike variability compared to PD. Characteristics of neurons and their distribution in the GPe was similar. Logistic regression and random forest models identified spike variability and randomness as the key features for distinguishing between PD and CD, instead of firing rate or oscillation properties. Our study demonstrates that pallidal activity can predict PD and CD with high accuracy. Burst dynamics and characteristics of spiking randomness including entropy appear to be the most meaningful reflections of the neurophysiology of studied diseases.</p>\n </div>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pallidal Spike-Train Variability and Randomness Are the Most Important Signatures to Classify Parkinson's Disease and Cervical Dystonia\",\"authors\":\"A. Sedov,&nbsp;P. Pavlovsky,&nbsp;V. Filyushkina,&nbsp;I. Dzhalagoniya,&nbsp;U. Semenova,&nbsp;N. Zakharov,&nbsp;A. Gamaleya,&nbsp;A. Tomskiy,&nbsp;Aasef G. Shaikh\",\"doi\":\"10.1111/ejn.16653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Movement disorders such as Parkinson's disease (PD) and cervical dystonia (CD) are associated with abnormal neuronal activity in the globus pallidus internus (GPi). Reduced firing rate and presence of spiking bursts are typical for CD, whereas PD is characterized by high frequency tonic activity. This research aims to identify the most important pallidal spiking parameters to classify these conditions. We analysed the single unit activity of the globus pallidus externus (GPe) and internus (GPi) in 11 CD and 10 PD patients who underwent standard-of-care DBS implantation. We compared firing rate, firing pattern and oscillatory characteristics of tonic, burst and pause cells and used logistic regression and random forest models to classify patients according to their pallidal activity. In the GPi, we discovered prevalence of high firing rate tonic cells in patients with PD, whereas in dystonia, burst neurons with high firing rate were predominant. GPi pause cells were mostly observed in CD patients and exhibited less spike variability compared to PD. Characteristics of neurons and their distribution in the GPe was similar. Logistic regression and random forest models identified spike variability and randomness as the key features for distinguishing between PD and CD, instead of firing rate or oscillation properties. Our study demonstrates that pallidal activity can predict PD and CD with high accuracy. Burst dynamics and characteristics of spiking randomness including entropy appear to be the most meaningful reflections of the neurophysiology of studied diseases.</p>\\n </div>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"61 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16653\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16653","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

运动障碍如帕金森病(PD)和颈肌张力障碍(CD)与内苍白球(GPi)的异常神经元活动有关。放电速率降低和脉冲爆发的存在是CD的典型特征,而PD的特征是高频强直性活动。本研究的目的是确定最重要的白斑尖峰参数来分类这些条件。我们分析了11例CD和10例PD患者接受标准DBS植入的苍白球外(GPe)和内(GPi)的单单位活动。我们比较了强直、爆发和暂停细胞的放电速率、放电模式和振荡特征,并使用逻辑回归和随机森林模型根据患者的苍白质活动对患者进行分类。在GPi中,我们发现PD患者中普遍存在高放电率的强直性细胞,而在肌张力障碍中,高放电率的破裂神经元占主导地位。GPi暂停细胞主要在CD患者中观察到,与PD相比,GPi暂停细胞表现出较少的尖峰变异性。神经元的特征及其在GPe中的分布是相似的。逻辑回归和随机森林模型将脉冲变异性和随机性作为区分PD和CD的关键特征,而不是射击速率或振荡特性。我们的研究表明,苍白质活动可以高精度地预测PD和CD。突发动力学和包括熵在内的峰值随机性特征似乎是所研究疾病的神经生理学最有意义的反映。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pallidal Spike-Train Variability and Randomness Are the Most Important Signatures to Classify Parkinson's Disease and Cervical Dystonia

Movement disorders such as Parkinson's disease (PD) and cervical dystonia (CD) are associated with abnormal neuronal activity in the globus pallidus internus (GPi). Reduced firing rate and presence of spiking bursts are typical for CD, whereas PD is characterized by high frequency tonic activity. This research aims to identify the most important pallidal spiking parameters to classify these conditions. We analysed the single unit activity of the globus pallidus externus (GPe) and internus (GPi) in 11 CD and 10 PD patients who underwent standard-of-care DBS implantation. We compared firing rate, firing pattern and oscillatory characteristics of tonic, burst and pause cells and used logistic regression and random forest models to classify patients according to their pallidal activity. In the GPi, we discovered prevalence of high firing rate tonic cells in patients with PD, whereas in dystonia, burst neurons with high firing rate were predominant. GPi pause cells were mostly observed in CD patients and exhibited less spike variability compared to PD. Characteristics of neurons and their distribution in the GPe was similar. Logistic regression and random forest models identified spike variability and randomness as the key features for distinguishing between PD and CD, instead of firing rate or oscillation properties. Our study demonstrates that pallidal activity can predict PD and CD with high accuracy. Burst dynamics and characteristics of spiking randomness including entropy appear to be the most meaningful reflections of the neurophysiology of studied diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
期刊最新文献
Cerebral Lateralization During Handwritten and Typed Word Generation: A Functional Transcranial Doppler Ultrasound Study in Left-Handers and Right-Handers Extremely Low-Frequency and Low-Intensity Electromagnetic Field Technology (ELF-EMF) Sculpts Microtubules Issue Information Linking Subclinical Autistic Traits and Perceptual Category Learning Posture-Dependent Modulation of Interoceptive Processing in Young Male Participants: A Heartbeat-Evoked Potential Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1