Wen Zhang, Xiangyu Zheng, Yudong Hu, Ye Ni, Guochao Xu
{"title":"手性哌啶胺及其衍生物生物催化立体发散合成中立体选择性还原氨基酶的结构导向挖掘。","authors":"Wen Zhang, Xiangyu Zheng, Yudong Hu, Ye Ni, Guochao Xu","doi":"10.1016/j.jbiotec.2025.01.004","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral azacyclic amine derivatives occupy a vital role of nitrogen-containing compounds, due to serve as foundational motifs in numerous pharmaceuticals and bioactive substances. Novel complementary enantioselective reductive aminases IRED9 and IRED11 were unveiled through comprehensive gene mining from Streptomyces viridochromogenes and Micromonospora echinaurantiaca, respectively, which both demonstrated enantiomeric excess (ee) values and conversion ratios of up to 99 % towards N-Boc-3-pyridinone (NBPO) and cyclopropylamine. IRED9 exhibited the highest activity at pH 8.0 and 45 °C,while IRED11 have optimal conditions at pH 8.0 and 50 °C. A variety of amine donors and ketones could be converted by IRED9 and IRED11 for asymmetric synthesis of piperidinamine and derivatives with complementary enantioselectivity. Through preparative-scale synthesis of (S)- and (R)-3-piperidinamine, IRED9 and IRED11 demonstrate substrate loadings of 120 g·L<sup>-1</sup> and 40 g·L<sup>-1</sup> with 98 % yield and 99 % ee, respectively. The space time yield (STY) reached 142.7 g·L<sup>-1</sup>d<sup>-1</sup> and 47.1 g·L<sup>-1</sup>d<sup>-1</sup> for the S enantiomer and R enantiomer, respectively. Interaction analysis indicated the substrate orientation and strong charge attraction interaction are vital factors for enantioselectivity of IREDs. This study unveils novel enantioselective reductive aminases for stereodivergent synthesis of piperidinamine and derivatives at high substrate loading.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"399 ","pages":"28-37"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-guided mining of stereoselective reductive aminases for biocatalytic stereodivergent synthesis of chiral piperidinamine and derivatives.\",\"authors\":\"Wen Zhang, Xiangyu Zheng, Yudong Hu, Ye Ni, Guochao Xu\",\"doi\":\"10.1016/j.jbiotec.2025.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chiral azacyclic amine derivatives occupy a vital role of nitrogen-containing compounds, due to serve as foundational motifs in numerous pharmaceuticals and bioactive substances. Novel complementary enantioselective reductive aminases IRED9 and IRED11 were unveiled through comprehensive gene mining from Streptomyces viridochromogenes and Micromonospora echinaurantiaca, respectively, which both demonstrated enantiomeric excess (ee) values and conversion ratios of up to 99 % towards N-Boc-3-pyridinone (NBPO) and cyclopropylamine. IRED9 exhibited the highest activity at pH 8.0 and 45 °C,while IRED11 have optimal conditions at pH 8.0 and 50 °C. A variety of amine donors and ketones could be converted by IRED9 and IRED11 for asymmetric synthesis of piperidinamine and derivatives with complementary enantioselectivity. Through preparative-scale synthesis of (S)- and (R)-3-piperidinamine, IRED9 and IRED11 demonstrate substrate loadings of 120 g·L<sup>-1</sup> and 40 g·L<sup>-1</sup> with 98 % yield and 99 % ee, respectively. The space time yield (STY) reached 142.7 g·L<sup>-1</sup>d<sup>-1</sup> and 47.1 g·L<sup>-1</sup>d<sup>-1</sup> for the S enantiomer and R enantiomer, respectively. Interaction analysis indicated the substrate orientation and strong charge attraction interaction are vital factors for enantioselectivity of IREDs. This study unveils novel enantioselective reductive aminases for stereodivergent synthesis of piperidinamine and derivatives at high substrate loading.</p>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\"399 \",\"pages\":\"28-37\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbiotec.2025.01.004\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2025.01.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Structure-guided mining of stereoselective reductive aminases for biocatalytic stereodivergent synthesis of chiral piperidinamine and derivatives.
Chiral azacyclic amine derivatives occupy a vital role of nitrogen-containing compounds, due to serve as foundational motifs in numerous pharmaceuticals and bioactive substances. Novel complementary enantioselective reductive aminases IRED9 and IRED11 were unveiled through comprehensive gene mining from Streptomyces viridochromogenes and Micromonospora echinaurantiaca, respectively, which both demonstrated enantiomeric excess (ee) values and conversion ratios of up to 99 % towards N-Boc-3-pyridinone (NBPO) and cyclopropylamine. IRED9 exhibited the highest activity at pH 8.0 and 45 °C,while IRED11 have optimal conditions at pH 8.0 and 50 °C. A variety of amine donors and ketones could be converted by IRED9 and IRED11 for asymmetric synthesis of piperidinamine and derivatives with complementary enantioselectivity. Through preparative-scale synthesis of (S)- and (R)-3-piperidinamine, IRED9 and IRED11 demonstrate substrate loadings of 120 g·L-1 and 40 g·L-1 with 98 % yield and 99 % ee, respectively. The space time yield (STY) reached 142.7 g·L-1d-1 and 47.1 g·L-1d-1 for the S enantiomer and R enantiomer, respectively. Interaction analysis indicated the substrate orientation and strong charge attraction interaction are vital factors for enantioselectivity of IREDs. This study unveils novel enantioselective reductive aminases for stereodivergent synthesis of piperidinamine and derivatives at high substrate loading.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.