Abbas Al Bazzal, Bassel H Hoteit, Mariam Chokor, Abdallah Safawi, Zahraa Zibara, Fatima Rizk, Aya Kawssan, Naseeb Danaf, Layal Msheik, Hiba Hamdar
{"title":"医用气体在癌症治疗中的潜在应用。","authors":"Abbas Al Bazzal, Bassel H Hoteit, Mariam Chokor, Abdallah Safawi, Zahraa Zibara, Fatima Rizk, Aya Kawssan, Naseeb Danaf, Layal Msheik, Hiba Hamdar","doi":"10.4103/mgr.MEDGASRES-D-24-00089","DOIUrl":null,"url":null,"abstract":"<p><p>Medical gases were primarily used for respiratory therapy and anesthesia, which showed promising potential in the cancer therapy. Several physiological and pathological processes were affected by the key gases, such as oxygen, carbon dioxide, nitric oxide, hydrogen sulfide, and carbon monoxide. Oxygen targets shrinking the tumor via hyperbaric oxygen therapy, and once combined with radiation therapy it enhances its effect. Nitric oxide has both anti- and pro-tumor effects depending on its level; at high doses, it triggers cell death while at low doses it supports cancer growth. The same concept is applied to hydrogen sulfide which promotes cancer growth by enhancing mitochondrial bioenergetics and supporting angiogenesis at low concentrations, while at high concentrations it induces cancer cell death while sparing normal cells. Furthermore, carbon dioxide helps induce apoptosis and improve oxygenation for cancer treatments by increasing the release of oxygen from hemoglobin. Moreover, high-dose carbon monoxide gas therapy has demonstrated significant tumor reductions in vivo and is supported by nanomedicine and specialized medicines to boost its delivery to tumor cells and the availability of hydrogen peroxide. Despite the promising potentials of these gases, several challenges remain. Gas concentrations should be regulated to balance pro-tumor and anti-tumor effects for gases such as nitric oxide and hydrogen sulfide. Furthermore, effective delivery systems, such as nanoparticles, should be developed for targeted therapy.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 2","pages":"309-317"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential therapeutic applications of medical gases in cancer treatment.\",\"authors\":\"Abbas Al Bazzal, Bassel H Hoteit, Mariam Chokor, Abdallah Safawi, Zahraa Zibara, Fatima Rizk, Aya Kawssan, Naseeb Danaf, Layal Msheik, Hiba Hamdar\",\"doi\":\"10.4103/mgr.MEDGASRES-D-24-00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical gases were primarily used for respiratory therapy and anesthesia, which showed promising potential in the cancer therapy. Several physiological and pathological processes were affected by the key gases, such as oxygen, carbon dioxide, nitric oxide, hydrogen sulfide, and carbon monoxide. Oxygen targets shrinking the tumor via hyperbaric oxygen therapy, and once combined with radiation therapy it enhances its effect. Nitric oxide has both anti- and pro-tumor effects depending on its level; at high doses, it triggers cell death while at low doses it supports cancer growth. The same concept is applied to hydrogen sulfide which promotes cancer growth by enhancing mitochondrial bioenergetics and supporting angiogenesis at low concentrations, while at high concentrations it induces cancer cell death while sparing normal cells. Furthermore, carbon dioxide helps induce apoptosis and improve oxygenation for cancer treatments by increasing the release of oxygen from hemoglobin. Moreover, high-dose carbon monoxide gas therapy has demonstrated significant tumor reductions in vivo and is supported by nanomedicine and specialized medicines to boost its delivery to tumor cells and the availability of hydrogen peroxide. Despite the promising potentials of these gases, several challenges remain. Gas concentrations should be regulated to balance pro-tumor and anti-tumor effects for gases such as nitric oxide and hydrogen sulfide. Furthermore, effective delivery systems, such as nanoparticles, should be developed for targeted therapy.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\"15 2\",\"pages\":\"309-317\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Potential therapeutic applications of medical gases in cancer treatment.
Medical gases were primarily used for respiratory therapy and anesthesia, which showed promising potential in the cancer therapy. Several physiological and pathological processes were affected by the key gases, such as oxygen, carbon dioxide, nitric oxide, hydrogen sulfide, and carbon monoxide. Oxygen targets shrinking the tumor via hyperbaric oxygen therapy, and once combined with radiation therapy it enhances its effect. Nitric oxide has both anti- and pro-tumor effects depending on its level; at high doses, it triggers cell death while at low doses it supports cancer growth. The same concept is applied to hydrogen sulfide which promotes cancer growth by enhancing mitochondrial bioenergetics and supporting angiogenesis at low concentrations, while at high concentrations it induces cancer cell death while sparing normal cells. Furthermore, carbon dioxide helps induce apoptosis and improve oxygenation for cancer treatments by increasing the release of oxygen from hemoglobin. Moreover, high-dose carbon monoxide gas therapy has demonstrated significant tumor reductions in vivo and is supported by nanomedicine and specialized medicines to boost its delivery to tumor cells and the availability of hydrogen peroxide. Despite the promising potentials of these gases, several challenges remain. Gas concentrations should be regulated to balance pro-tumor and anti-tumor effects for gases such as nitric oxide and hydrogen sulfide. Furthermore, effective delivery systems, such as nanoparticles, should be developed for targeted therapy.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.