柔性电磁超材料的制备与调制。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2025-01-20 DOI:10.1038/s41378-024-00806-1
Yanshuo Feng, Misheng Liang, Xiaoguang Zhao, Rui You
{"title":"柔性电磁超材料的制备与调制。","authors":"Yanshuo Feng, Misheng Liang, Xiaoguang Zhao, Rui You","doi":"10.1038/s41378-024-00806-1","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible electromagnetic metamaterials are a potential candidate for the ideal material for electromagnetic control due to their unique physical properties and structure. Flexible electromagnetic metamaterials can be designed to exhibit specific responses to electromagnetic waves within a particular frequency range. Research shows that flexible electromagnetic metamaterials exhibit significant electromagnetic control characteristics in microwave, terahertz, infrared and other frequency bands. It has a wide range of applications in the fields of electromagnetic wave absorption and stealth, antennas and microwave devices, communication information and other fields. In this review, the currently popular fabrication methods of flexible electromagnetic metamaterials are first summarized, highlighting the electromagnetic modulation capability in different frequency bands. Then, the applications of flexible electromagnetic metamaterials in four aspects, namely electromagnetic stealth, temperature modulation, electromagnetic shielding, and wearable sensors, are elaborated and summarized in detail. In addition, this review also discusses the shortcomings and limitations of flexible electromagnetic metamaterials for electromagnetic control. Finally, the conclusion and perspective of the electromagnetic properties of flexible electromagnetic metamaterials are presented.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"14"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747097/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication and modulation of flexible electromagnetic metamaterials.\",\"authors\":\"Yanshuo Feng, Misheng Liang, Xiaoguang Zhao, Rui You\",\"doi\":\"10.1038/s41378-024-00806-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flexible electromagnetic metamaterials are a potential candidate for the ideal material for electromagnetic control due to their unique physical properties and structure. Flexible electromagnetic metamaterials can be designed to exhibit specific responses to electromagnetic waves within a particular frequency range. Research shows that flexible electromagnetic metamaterials exhibit significant electromagnetic control characteristics in microwave, terahertz, infrared and other frequency bands. It has a wide range of applications in the fields of electromagnetic wave absorption and stealth, antennas and microwave devices, communication information and other fields. In this review, the currently popular fabrication methods of flexible electromagnetic metamaterials are first summarized, highlighting the electromagnetic modulation capability in different frequency bands. Then, the applications of flexible electromagnetic metamaterials in four aspects, namely electromagnetic stealth, temperature modulation, electromagnetic shielding, and wearable sensors, are elaborated and summarized in detail. In addition, this review also discusses the shortcomings and limitations of flexible electromagnetic metamaterials for electromagnetic control. Finally, the conclusion and perspective of the electromagnetic properties of flexible electromagnetic metamaterials are presented.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"14\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00806-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00806-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

柔性电磁超材料由于其独特的物理性质和结构,成为电磁控制的理想材料。柔性电磁超材料可以设计成对特定频率范围内的电磁波表现出特定的响应。研究表明,柔性电磁超材料在微波、太赫兹、红外等频段均表现出显著的电磁控制特性。它在电磁波吸收与隐身、天线与微波器件、通信信息等领域有着广泛的应用。本文首先综述了目前流行的柔性电磁超材料的制备方法,重点介绍了柔性电磁超材料在不同频段的电磁调制能力。然后,对柔性电磁超材料在电磁隐身、温度调制、电磁屏蔽、可穿戴传感器四个方面的应用进行了详细阐述和总结。此外,本文还讨论了柔性电磁超材料用于电磁控制的缺点和局限性。最后,对柔性电磁超材料的电磁特性进行了总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication and modulation of flexible electromagnetic metamaterials.

Flexible electromagnetic metamaterials are a potential candidate for the ideal material for electromagnetic control due to their unique physical properties and structure. Flexible electromagnetic metamaterials can be designed to exhibit specific responses to electromagnetic waves within a particular frequency range. Research shows that flexible electromagnetic metamaterials exhibit significant electromagnetic control characteristics in microwave, terahertz, infrared and other frequency bands. It has a wide range of applications in the fields of electromagnetic wave absorption and stealth, antennas and microwave devices, communication information and other fields. In this review, the currently popular fabrication methods of flexible electromagnetic metamaterials are first summarized, highlighting the electromagnetic modulation capability in different frequency bands. Then, the applications of flexible electromagnetic metamaterials in four aspects, namely electromagnetic stealth, temperature modulation, electromagnetic shielding, and wearable sensors, are elaborated and summarized in detail. In addition, this review also discusses the shortcomings and limitations of flexible electromagnetic metamaterials for electromagnetic control. Finally, the conclusion and perspective of the electromagnetic properties of flexible electromagnetic metamaterials are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
A low-cost printed circuit board-based centrifugal microfluidic platform for dielectrophoresis. Fully automated in vivo screening system for multi-organ imaging and pharmaceutical evaluation. Controllable tip exposure of ultramicroelectrodes coated by diamond-like carbon via direct microplasma jet for enhanced stability and fidelity in single-cell recording. Theoretical and experimental investigations of the CMOS compatible Pirani gauges with a temperature compensation model. An intelligent humidity sensing system for human behavior recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1