{"title":"跨越整个生命周期的主要组织的小麦植物激素图谱为细胞分裂素和茉莉酸的相互作用提供了新的见解。","authors":"Huanran Yin, Wei Liu, Xin Hu, Jingqi Jia, Mengmeng Liu, Jiaqi Wei, Yikeng Cheng, Xin Gong, Qiang Li, Wenhao Yan, Jizeng Jia, Lifeng Gao, Alisdair R Fernie, Wei Chen","doi":"10.1016/j.molp.2025.01.011","DOIUrl":null,"url":null,"abstract":"<p><p>Although numerous studies have focused on the specific organs or tissues at different development stages or under various abiotic and biotic stress, our understanding of the distribution and relative abundance of phytohormones throughout the entire life cycle of plant organs and tissues remains insufficient. Here, we present a phytohormone atlas resource covering the quantitative analysis of eight major classes of phytohormones, comprising a total of 40 hormone-related compounds, throughout the complete life cycle of wheat. In combination with transcriptome analysis, we established a Wheat Phytohormone Metabolic Regulatory Network (WPMRN). Using our WPMRN dataset and GO enrichment analysis, we swiftly characterized the function of TaLOG5-B1 in cytokinin biosynthesis. Furthermore, a detailed investigation of the WPMRN dataset uncovered transcription factor-mediated co-regulation mechanisms among different classes of phytohormones. We focused specifically on the metabolic regulatory involving cytokinin and jasmonic acid. To achieve this, we characterized genes TaLOG3-D1 and TaAOS-D1 involved in the biosynthesis of these phytohormones, along with their regulatory transcription factors TaDOF3A and TaDOF5.6B. The functions of these genes were validated in transgenic plants, revealing their ability to co-regulate radicle length. These findings serve as a case study that highlights the utility of this resource for studying phytohormone metabolic regulatory networks in cereal crops and for gaining insights into the roles of phytohormones in enhancing agronomic traits.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay.\",\"authors\":\"Huanran Yin, Wei Liu, Xin Hu, Jingqi Jia, Mengmeng Liu, Jiaqi Wei, Yikeng Cheng, Xin Gong, Qiang Li, Wenhao Yan, Jizeng Jia, Lifeng Gao, Alisdair R Fernie, Wei Chen\",\"doi\":\"10.1016/j.molp.2025.01.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although numerous studies have focused on the specific organs or tissues at different development stages or under various abiotic and biotic stress, our understanding of the distribution and relative abundance of phytohormones throughout the entire life cycle of plant organs and tissues remains insufficient. Here, we present a phytohormone atlas resource covering the quantitative analysis of eight major classes of phytohormones, comprising a total of 40 hormone-related compounds, throughout the complete life cycle of wheat. In combination with transcriptome analysis, we established a Wheat Phytohormone Metabolic Regulatory Network (WPMRN). Using our WPMRN dataset and GO enrichment analysis, we swiftly characterized the function of TaLOG5-B1 in cytokinin biosynthesis. Furthermore, a detailed investigation of the WPMRN dataset uncovered transcription factor-mediated co-regulation mechanisms among different classes of phytohormones. We focused specifically on the metabolic regulatory involving cytokinin and jasmonic acid. To achieve this, we characterized genes TaLOG3-D1 and TaAOS-D1 involved in the biosynthesis of these phytohormones, along with their regulatory transcription factors TaDOF3A and TaDOF5.6B. The functions of these genes were validated in transgenic plants, revealing their ability to co-regulate radicle length. These findings serve as a case study that highlights the utility of this resource for studying phytohormone metabolic regulatory networks in cereal crops and for gaining insights into the roles of phytohormones in enhancing agronomic traits.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2025.01.011\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.01.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay.
Although numerous studies have focused on the specific organs or tissues at different development stages or under various abiotic and biotic stress, our understanding of the distribution and relative abundance of phytohormones throughout the entire life cycle of plant organs and tissues remains insufficient. Here, we present a phytohormone atlas resource covering the quantitative analysis of eight major classes of phytohormones, comprising a total of 40 hormone-related compounds, throughout the complete life cycle of wheat. In combination with transcriptome analysis, we established a Wheat Phytohormone Metabolic Regulatory Network (WPMRN). Using our WPMRN dataset and GO enrichment analysis, we swiftly characterized the function of TaLOG5-B1 in cytokinin biosynthesis. Furthermore, a detailed investigation of the WPMRN dataset uncovered transcription factor-mediated co-regulation mechanisms among different classes of phytohormones. We focused specifically on the metabolic regulatory involving cytokinin and jasmonic acid. To achieve this, we characterized genes TaLOG3-D1 and TaAOS-D1 involved in the biosynthesis of these phytohormones, along with their regulatory transcription factors TaDOF3A and TaDOF5.6B. The functions of these genes were validated in transgenic plants, revealing their ability to co-regulate radicle length. These findings serve as a case study that highlights the utility of this resource for studying phytohormone metabolic regulatory networks in cereal crops and for gaining insights into the roles of phytohormones in enhancing agronomic traits.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.