{"title":"综合网络药理学、机器学习和实验验证确定调肾宫健治疗乳腺癌的关键靶点和化合物。","authors":"Huiyan Ying, Weikaixin Kong, Xiangwei Xu","doi":"10.2147/OTT.S486300","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>TiaoShenGongJian (TSGJ) decoction, a traditional Chinese medicine for breast cancer, has unknown active compounds, targets, and mechanisms. This study identifies TSGJ's key targets and compounds for breast cancer treatment through network pharmacology, machine learning, and experimental validation.</p><p><strong>Methods: </strong>Bioactive components and targets of TSGJ were identified from the TCMSP database, and breast cancer-related targets from GeneCards, PharmGkb, and RNA-seq datasets. Intersection of these targets revealed therapeutic targets of TSGJ. PPI analysis was performed via STRING, and machine learning methods (SVM, RF, GLM, XGBoost) identified key targets, validated by GSE70905, GSE70947, GSE22820, and TCGA-BRCA datasets. Pathway analyses and molecular docking were performed. TSGJ and core compounds' effectiveness was confirmed by MTT and RT-qPCR assays.</p><p><strong>Results: </strong>160 common targets of TSGJ were identified, with 30 hub targets from PPI analysis. Five predictive targets (HIF1A, CASP8, FOS, EGFR, PPARG) were screened via SVM. Their diagnostic, biomarker, immune, and clinical values were validated. Quercetin, luteolin, and baicalein were identified as core components. Molecular docking confirmed their strong affinities with predicted targets. These compounds modulated key targets and induced cytotoxicity in breast cancer cell lines in a similar way as TSGJ.</p><p><strong>Conclusion: </strong>This study reveals the main active components and targets of TSGJ against breast cancer, supporting its potential for breast cancer prevention and treatment.</p>","PeriodicalId":19534,"journal":{"name":"OncoTargets and therapy","volume":"18 ","pages":"49-71"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745062/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated Network Pharmacology, Machine Learning and Experimental Validation to Identify the Key Targets and Compounds of <i>TiaoShenGongJian</i> for the Treatment of Breast Cancer.\",\"authors\":\"Huiyan Ying, Weikaixin Kong, Xiangwei Xu\",\"doi\":\"10.2147/OTT.S486300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>TiaoShenGongJian (TSGJ) decoction, a traditional Chinese medicine for breast cancer, has unknown active compounds, targets, and mechanisms. This study identifies TSGJ's key targets and compounds for breast cancer treatment through network pharmacology, machine learning, and experimental validation.</p><p><strong>Methods: </strong>Bioactive components and targets of TSGJ were identified from the TCMSP database, and breast cancer-related targets from GeneCards, PharmGkb, and RNA-seq datasets. Intersection of these targets revealed therapeutic targets of TSGJ. PPI analysis was performed via STRING, and machine learning methods (SVM, RF, GLM, XGBoost) identified key targets, validated by GSE70905, GSE70947, GSE22820, and TCGA-BRCA datasets. Pathway analyses and molecular docking were performed. TSGJ and core compounds' effectiveness was confirmed by MTT and RT-qPCR assays.</p><p><strong>Results: </strong>160 common targets of TSGJ were identified, with 30 hub targets from PPI analysis. Five predictive targets (HIF1A, CASP8, FOS, EGFR, PPARG) were screened via SVM. Their diagnostic, biomarker, immune, and clinical values were validated. Quercetin, luteolin, and baicalein were identified as core components. Molecular docking confirmed their strong affinities with predicted targets. These compounds modulated key targets and induced cytotoxicity in breast cancer cell lines in a similar way as TSGJ.</p><p><strong>Conclusion: </strong>This study reveals the main active components and targets of TSGJ against breast cancer, supporting its potential for breast cancer prevention and treatment.</p>\",\"PeriodicalId\":19534,\"journal\":{\"name\":\"OncoTargets and therapy\",\"volume\":\"18 \",\"pages\":\"49-71\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745062/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OncoTargets and therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/OTT.S486300\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OncoTargets and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/OTT.S486300","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Integrated Network Pharmacology, Machine Learning and Experimental Validation to Identify the Key Targets and Compounds of TiaoShenGongJian for the Treatment of Breast Cancer.
Background: TiaoShenGongJian (TSGJ) decoction, a traditional Chinese medicine for breast cancer, has unknown active compounds, targets, and mechanisms. This study identifies TSGJ's key targets and compounds for breast cancer treatment through network pharmacology, machine learning, and experimental validation.
Methods: Bioactive components and targets of TSGJ were identified from the TCMSP database, and breast cancer-related targets from GeneCards, PharmGkb, and RNA-seq datasets. Intersection of these targets revealed therapeutic targets of TSGJ. PPI analysis was performed via STRING, and machine learning methods (SVM, RF, GLM, XGBoost) identified key targets, validated by GSE70905, GSE70947, GSE22820, and TCGA-BRCA datasets. Pathway analyses and molecular docking were performed. TSGJ and core compounds' effectiveness was confirmed by MTT and RT-qPCR assays.
Results: 160 common targets of TSGJ were identified, with 30 hub targets from PPI analysis. Five predictive targets (HIF1A, CASP8, FOS, EGFR, PPARG) were screened via SVM. Their diagnostic, biomarker, immune, and clinical values were validated. Quercetin, luteolin, and baicalein were identified as core components. Molecular docking confirmed their strong affinities with predicted targets. These compounds modulated key targets and induced cytotoxicity in breast cancer cell lines in a similar way as TSGJ.
Conclusion: This study reveals the main active components and targets of TSGJ against breast cancer, supporting its potential for breast cancer prevention and treatment.
期刊介绍:
OncoTargets and Therapy is an international, peer-reviewed journal focusing on molecular aspects of cancer research, that is, the molecular diagnosis of and targeted molecular or precision therapy for all types of cancer.
The journal is characterized by the rapid reporting of high-quality original research, basic science, reviews and evaluations, expert opinion and commentary that shed novel insight on a cancer or cancer subtype.
Specific topics covered by the journal include:
-Novel therapeutic targets and innovative agents
-Novel therapeutic regimens for improved benefit and/or decreased side effects
-Early stage clinical trials
Further considerations when submitting to OncoTargets and Therapy:
-Studies containing in vivo animal model data will be considered favorably.
-Tissue microarray analyses will not be considered except in cases where they are supported by comprehensive biological studies involving multiple cell lines.
-Biomarker association studies will be considered only when validated by comprehensive in vitro data and analysis of human tissue samples.
-Studies utilizing publicly available data (e.g. GWAS/TCGA/GEO etc.) should add to the body of knowledge about a specific disease or relevant phenotype and must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Bioinformatics studies must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Single nucleotide polymorphism (SNP) studies will not be considered.