Di He, Zohaib Kaleem, Sharafat Ali, Hafsah Shahbaz, Kangni Zhang, Juanjuan Li, Mohamed Salah Sheteiwy, Zaid Ulhassan, Weijun Zhou
{"title":"氧化铁纳米颗粒对甘蓝型油菜镉毒性的影响","authors":"Di He, Zohaib Kaleem, Sharafat Ali, Hafsah Shahbaz, Kangni Zhang, Juanjuan Li, Mohamed Salah Sheteiwy, Zaid Ulhassan, Weijun Zhou","doi":"10.1016/j.plaphy.2025.109500","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) contamination greatly hinders plant productivity. Nanotechnology offers a promising solution for Cd phytotoxicity. The novelty of this study lies in the limited research on the effects of nanoiron (Fe<sub>3</sub>O<sub>4</sub>NPs) in regulating Cd toxicity in oilseed crops. This study examined how Fe<sub>3</sub>O<sub>4</sub>NPs regulated the Cd-exposure in B. napus. Foliar spray of 10 mg L<sup>-1</sup> Fe<sub>3</sub>O<sub>4</sub>NPs was applied to 50 μM Cd-stressed B. napus seedlings via leaf exposure in hydroponic system. Under Cd stress, Fe<sub>3</sub>O<sub>4</sub>NPs decreased the Cd-accumulation (25-37%) due to adsorption followed by more root Cd-immobilization, and increased the plant height (23-31%) and biomass (17-24%). These findings were directly correlated with better photosynthetic activity (chlorophylls, gas exchanges and photosynthetic efficiency), leaf stomata opening and nutrients accumulation (20-29%). Subcellular localization revealed that Fe<sub>3</sub>O<sub>4</sub>NPs enhanced the binding capacity of cell wall for Cd to hinder its entry into cell organalles and facilitated vacoular sequestration. Additionally, Fe<sub>3</sub>O<sub>4</sub>NPs decreased the oxidative stress (21-33%) and peroxidation of lipids (24-31%) by regulating the genes-associated to superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione reductase, reduced glutathione, phytochelation, chlorophyll synthesis and Cd-transporters. Fe<sub>3</sub>O<sub>4</sub>NPs protected plant roots from Cd-induced cell structural damages and cell death. Among studied parameters, ZD 635 exhibited greater tolerance to Cd stress when compared to ZD 622 cultivar. Findings revealed that Fe<sub>3</sub>O<sub>4</sub>NPs effectively mitigate Cd toxicity by improving the photosynthesis, antioxidant defense mechanisms, cellular protection, nutrients accumulation and limiting Cd accumulation. This research offers a benchmark for the practical applicability of Fe<sub>3</sub>O<sub>4</sub>NPs to enhance the quality of canola production in Cd-contaminated soils.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109500"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of iron oxide nanoparticles on cadmium toxicity mitigation in Brassica napus.\",\"authors\":\"Di He, Zohaib Kaleem, Sharafat Ali, Hafsah Shahbaz, Kangni Zhang, Juanjuan Li, Mohamed Salah Sheteiwy, Zaid Ulhassan, Weijun Zhou\",\"doi\":\"10.1016/j.plaphy.2025.109500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cadmium (Cd) contamination greatly hinders plant productivity. Nanotechnology offers a promising solution for Cd phytotoxicity. The novelty of this study lies in the limited research on the effects of nanoiron (Fe<sub>3</sub>O<sub>4</sub>NPs) in regulating Cd toxicity in oilseed crops. This study examined how Fe<sub>3</sub>O<sub>4</sub>NPs regulated the Cd-exposure in B. napus. Foliar spray of 10 mg L<sup>-1</sup> Fe<sub>3</sub>O<sub>4</sub>NPs was applied to 50 μM Cd-stressed B. napus seedlings via leaf exposure in hydroponic system. Under Cd stress, Fe<sub>3</sub>O<sub>4</sub>NPs decreased the Cd-accumulation (25-37%) due to adsorption followed by more root Cd-immobilization, and increased the plant height (23-31%) and biomass (17-24%). These findings were directly correlated with better photosynthetic activity (chlorophylls, gas exchanges and photosynthetic efficiency), leaf stomata opening and nutrients accumulation (20-29%). Subcellular localization revealed that Fe<sub>3</sub>O<sub>4</sub>NPs enhanced the binding capacity of cell wall for Cd to hinder its entry into cell organalles and facilitated vacoular sequestration. Additionally, Fe<sub>3</sub>O<sub>4</sub>NPs decreased the oxidative stress (21-33%) and peroxidation of lipids (24-31%) by regulating the genes-associated to superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione reductase, reduced glutathione, phytochelation, chlorophyll synthesis and Cd-transporters. Fe<sub>3</sub>O<sub>4</sub>NPs protected plant roots from Cd-induced cell structural damages and cell death. Among studied parameters, ZD 635 exhibited greater tolerance to Cd stress when compared to ZD 622 cultivar. Findings revealed that Fe<sub>3</sub>O<sub>4</sub>NPs effectively mitigate Cd toxicity by improving the photosynthesis, antioxidant defense mechanisms, cellular protection, nutrients accumulation and limiting Cd accumulation. This research offers a benchmark for the practical applicability of Fe<sub>3</sub>O<sub>4</sub>NPs to enhance the quality of canola production in Cd-contaminated soils.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109500\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2025.109500\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109500","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Impact of iron oxide nanoparticles on cadmium toxicity mitigation in Brassica napus.
Cadmium (Cd) contamination greatly hinders plant productivity. Nanotechnology offers a promising solution for Cd phytotoxicity. The novelty of this study lies in the limited research on the effects of nanoiron (Fe3O4NPs) in regulating Cd toxicity in oilseed crops. This study examined how Fe3O4NPs regulated the Cd-exposure in B. napus. Foliar spray of 10 mg L-1 Fe3O4NPs was applied to 50 μM Cd-stressed B. napus seedlings via leaf exposure in hydroponic system. Under Cd stress, Fe3O4NPs decreased the Cd-accumulation (25-37%) due to adsorption followed by more root Cd-immobilization, and increased the plant height (23-31%) and biomass (17-24%). These findings were directly correlated with better photosynthetic activity (chlorophylls, gas exchanges and photosynthetic efficiency), leaf stomata opening and nutrients accumulation (20-29%). Subcellular localization revealed that Fe3O4NPs enhanced the binding capacity of cell wall for Cd to hinder its entry into cell organalles and facilitated vacoular sequestration. Additionally, Fe3O4NPs decreased the oxidative stress (21-33%) and peroxidation of lipids (24-31%) by regulating the genes-associated to superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione reductase, reduced glutathione, phytochelation, chlorophyll synthesis and Cd-transporters. Fe3O4NPs protected plant roots from Cd-induced cell structural damages and cell death. Among studied parameters, ZD 635 exhibited greater tolerance to Cd stress when compared to ZD 622 cultivar. Findings revealed that Fe3O4NPs effectively mitigate Cd toxicity by improving the photosynthesis, antioxidant defense mechanisms, cellular protection, nutrients accumulation and limiting Cd accumulation. This research offers a benchmark for the practical applicability of Fe3O4NPs to enhance the quality of canola production in Cd-contaminated soils.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.