{"title":"将组织学变化与肝脏粘弹性联系起来:一种混合分析-计算微观力学方法。","authors":"Haritya Shah, Murthy N Guddati","doi":"10.1088/1361-6560/adaad3","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by elastography that utilizes tissue mechanical properties as biomarkers for liver disease, with the eventual objective of quantitatively linking histopathology and bulk mechanical properties, we develop a micromechanical modeling approach to capture the effects of fat and collagen deposition in the liver. Specifically, we utilize computational homogenization to convert the microstructural changes in hepatic lobule to the effective viscoelastic modulus of the liver tissue, i.e. predict the bulk material properties by analyzing the deformation of repeating unit cell. The lipid and collagen deposition is simulated with the help of ad hoc algorithms informed by histological observations. Collagen deposition is directly included in the computational model, while composite material theory is used to convert fat content to the microscopic mechanical properties, which in turn is included in the computational model. The results illustrate the model's ability to capture the effect of both fat and collagen deposition on the viscoelastic moduli and represents a step towards linking histopathological changes in the liver to its bulk mechanical properties, which can eventually provide insights for accurate diagnosis with elastography.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards linking histological changes to liver viscoelasticity: a hybrid analytical-computational micromechanics approach.\",\"authors\":\"Haritya Shah, Murthy N Guddati\",\"doi\":\"10.1088/1361-6560/adaad3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by elastography that utilizes tissue mechanical properties as biomarkers for liver disease, with the eventual objective of quantitatively linking histopathology and bulk mechanical properties, we develop a micromechanical modeling approach to capture the effects of fat and collagen deposition in the liver. Specifically, we utilize computational homogenization to convert the microstructural changes in hepatic lobule to the effective viscoelastic modulus of the liver tissue, i.e. predict the bulk material properties by analyzing the deformation of repeating unit cell. The lipid and collagen deposition is simulated with the help of ad hoc algorithms informed by histological observations. Collagen deposition is directly included in the computational model, while composite material theory is used to convert fat content to the microscopic mechanical properties, which in turn is included in the computational model. The results illustrate the model's ability to capture the effect of both fat and collagen deposition on the viscoelastic moduli and represents a step towards linking histopathological changes in the liver to its bulk mechanical properties, which can eventually provide insights for accurate diagnosis with elastography.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/adaad3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adaad3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Towards linking histological changes to liver viscoelasticity: a hybrid analytical-computational micromechanics approach.
Motivated by elastography that utilizes tissue mechanical properties as biomarkers for liver disease, with the eventual objective of quantitatively linking histopathology and bulk mechanical properties, we develop a micromechanical modeling approach to capture the effects of fat and collagen deposition in the liver. Specifically, we utilize computational homogenization to convert the microstructural changes in hepatic lobule to the effective viscoelastic modulus of the liver tissue, i.e. predict the bulk material properties by analyzing the deformation of repeating unit cell. The lipid and collagen deposition is simulated with the help of ad hoc algorithms informed by histological observations. Collagen deposition is directly included in the computational model, while composite material theory is used to convert fat content to the microscopic mechanical properties, which in turn is included in the computational model. The results illustrate the model's ability to capture the effect of both fat and collagen deposition on the viscoelastic moduli and represents a step towards linking histopathological changes in the liver to its bulk mechanical properties, which can eventually provide insights for accurate diagnosis with elastography.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry