广义的、基于亚致死损伤的数学方法,用于改进热疗、放疗等后克隆生存曲线变平的建模。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-01-20 DOI:10.1088/1361-6560/ada680
Adriana M De Mendoza, Soňa Michlíková, Paula S Castro, Anni G Muñoz, Lisa Eckhardt, Steffen Lange, Leoni A Kunz-Schughart
{"title":"广义的、基于亚致死损伤的数学方法,用于改进热疗、放疗等后克隆生存曲线变平的建模。","authors":"Adriana M De Mendoza, Soňa Michlíková, Paula S Castro, Anni G Muñoz, Lisa Eckhardt, Steffen Lange, Leoni A Kunz-Schughart","doi":"10.1088/1361-6560/ada680","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Mathematical modeling can offer valuable insights into the behavior of biological systems upon treatment. Different mathematical models (empirical, semi-empirical, and mechanistic) have been designed to predict the efficacy of either hyperthermia (HT), radiotherapy (RT), or their combination. However, mathematical approaches capable of modeling cell survival from shared general principles for both mono-treatments alone and their co-application are rare. Moreover, some cell cultures show dose-dependent saturation in response to HT or RT, manifesting in survival curve flattenings. An advanced survival model must, therefore, appropriately reflect such behavior.<i>Approach</i>. We propose a mathematical approach to model the effect of both treatments based on the general principle of sublethal damage (SLD) accumulation for the induction of cell death and irreversible proliferation arrest. Our approach extends Jung's model on heat-induced cellular inactivation by incorporating dose-dependent recovery rates that delineate changes in SLD restoration.<i>Main results</i>. The resulting unified model (Umodel) accurately describes HT and RT survival outcomes, applies to simultaneous thermoradiotherapy modeling, and is particularly suited to reproduce survival curve flattening phenomena. We demonstrate the Umodel's robust performance (R2 0.95) based on numerous clonogenic cell survival data sets from the literature and our experimental studies.<i>Significance</i>. The proposed Umodel allows using a single unified mathematical function based on generalized principles of accumulation of SLD with implemented radiosensitization, regardless of the type of energy deposited and the mechanism of action. It can reproduce various patterns of clonogenic survival curves, including any flattening, thus encompassing the variability of cell reactions to therapy, thereby potentially better reflecting overall tumor responses. Our approach opens a range of options for further model developments and strategic therapy outcome predictions of sequential treatments applied in different orders and varying recovery intervals between them.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":"70 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized, sublethal damage-based mathematical approach for improved modeling of clonogenic survival curve flattening upon hyperthermia, radiotherapy, and beyond.\",\"authors\":\"Adriana M De Mendoza, Soňa Michlíková, Paula S Castro, Anni G Muñoz, Lisa Eckhardt, Steffen Lange, Leoni A Kunz-Schughart\",\"doi\":\"10.1088/1361-6560/ada680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Mathematical modeling can offer valuable insights into the behavior of biological systems upon treatment. Different mathematical models (empirical, semi-empirical, and mechanistic) have been designed to predict the efficacy of either hyperthermia (HT), radiotherapy (RT), or their combination. However, mathematical approaches capable of modeling cell survival from shared general principles for both mono-treatments alone and their co-application are rare. Moreover, some cell cultures show dose-dependent saturation in response to HT or RT, manifesting in survival curve flattenings. An advanced survival model must, therefore, appropriately reflect such behavior.<i>Approach</i>. We propose a mathematical approach to model the effect of both treatments based on the general principle of sublethal damage (SLD) accumulation for the induction of cell death and irreversible proliferation arrest. Our approach extends Jung's model on heat-induced cellular inactivation by incorporating dose-dependent recovery rates that delineate changes in SLD restoration.<i>Main results</i>. The resulting unified model (Umodel) accurately describes HT and RT survival outcomes, applies to simultaneous thermoradiotherapy modeling, and is particularly suited to reproduce survival curve flattening phenomena. We demonstrate the Umodel's robust performance (R2 0.95) based on numerous clonogenic cell survival data sets from the literature and our experimental studies.<i>Significance</i>. The proposed Umodel allows using a single unified mathematical function based on generalized principles of accumulation of SLD with implemented radiosensitization, regardless of the type of energy deposited and the mechanism of action. It can reproduce various patterns of clonogenic survival curves, including any flattening, thus encompassing the variability of cell reactions to therapy, thereby potentially better reflecting overall tumor responses. Our approach opens a range of options for further model developments and strategic therapy outcome predictions of sequential treatments applied in different orders and varying recovery intervals between them.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\"70 2\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ada680\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ada680","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目标。数学建模可以提供有价值的见解生物系统的行为治疗。不同的数学模型(经验性、半经验性和机械性)被设计用来预测热疗(HT)、放疗(RT)或两者联合的疗效。然而,能够从单一处理和联合应用的共同一般原则中模拟细胞存活的数学方法很少。此外,一些细胞培养对HT或RT的反应显示出剂量依赖性饱和,表现为生存曲线变平。因此,一个先进的生存模式必须恰当地反映这种行为。我们提出了一种基于亚致死损伤(SLD)积累诱导细胞死亡和不可逆增殖阻滞的一般原理的数学方法来模拟这两种治疗的效果。我们的方法通过纳入描述SLD恢复变化的剂量依赖性恢复率,扩展了Jung的热诱导细胞失活模型。主要的结果。由此产生的统一模型(Umodel)准确地描述了HT和RT的生存结果,适用于同步热放疗建模,特别适合再现生存曲线平坦化现象。基于文献和实验研究的大量克隆细胞存活数据集,我们证明了Umodel的稳健性能(R2 0.95)。所提出的Umodel允许使用一个统一的数学函数,该函数基于SLD积累的广义原理,并实现放射致敏,而不管沉积的能量类型和作用机制如何。它可以再现各种克隆生存曲线模式,包括任何平坦化,从而涵盖细胞对治疗反应的可变性,从而可能更好地反映整体肿瘤反应。我们的方法为进一步的模型开发和以不同顺序和不同恢复间隔应用的顺序治疗的策略治疗结果预测开辟了一系列选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized, sublethal damage-based mathematical approach for improved modeling of clonogenic survival curve flattening upon hyperthermia, radiotherapy, and beyond.

Objective. Mathematical modeling can offer valuable insights into the behavior of biological systems upon treatment. Different mathematical models (empirical, semi-empirical, and mechanistic) have been designed to predict the efficacy of either hyperthermia (HT), radiotherapy (RT), or their combination. However, mathematical approaches capable of modeling cell survival from shared general principles for both mono-treatments alone and their co-application are rare. Moreover, some cell cultures show dose-dependent saturation in response to HT or RT, manifesting in survival curve flattenings. An advanced survival model must, therefore, appropriately reflect such behavior.Approach. We propose a mathematical approach to model the effect of both treatments based on the general principle of sublethal damage (SLD) accumulation for the induction of cell death and irreversible proliferation arrest. Our approach extends Jung's model on heat-induced cellular inactivation by incorporating dose-dependent recovery rates that delineate changes in SLD restoration.Main results. The resulting unified model (Umodel) accurately describes HT and RT survival outcomes, applies to simultaneous thermoradiotherapy modeling, and is particularly suited to reproduce survival curve flattening phenomena. We demonstrate the Umodel's robust performance (R2 0.95) based on numerous clonogenic cell survival data sets from the literature and our experimental studies.Significance. The proposed Umodel allows using a single unified mathematical function based on generalized principles of accumulation of SLD with implemented radiosensitization, regardless of the type of energy deposited and the mechanism of action. It can reproduce various patterns of clonogenic survival curves, including any flattening, thus encompassing the variability of cell reactions to therapy, thereby potentially better reflecting overall tumor responses. Our approach opens a range of options for further model developments and strategic therapy outcome predictions of sequential treatments applied in different orders and varying recovery intervals between them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1