豌豆乳清废水作为生产二十二碳六烯酸(C22:6 n3)的介质添加剂。

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Preparative Biochemistry & Biotechnology Pub Date : 2025-01-19 DOI:10.1080/10826068.2025.2453833
Xinyu Wang, Xiangying Zhao, Ruiguo Li, Jiaxiang Zhang, Xia Li, Liping Liu
{"title":"豌豆乳清废水作为生产二十二碳六烯酸(C22:6 n3)的介质添加剂。","authors":"Xinyu Wang, Xiangying Zhao, Ruiguo Li, Jiaxiang Zhang, Xia Li, Liping Liu","doi":"10.1080/10826068.2025.2453833","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the potential of pea whey wastewater (PWW) as a substrate for the biosynthesis of docosahexaenoic acid (DHA) was investigated by culturing the strain Aurantiochytrium limacinum SFD-1502. The results showed that culturing SFD-1502 in PWW alone resulted in poor growth, possibly due to an insufficient carbon source. The addition of glucose and monosodium glutamate to PWW resulted in a significant improvement in cell growth, and the dry weight of the cells reaching 43.45 ± 0.39 g/L g/L, comparable to that of the control (using artificial seawater fermentation medium), despite the lipid content in the cells and the DHA proportion in the lipids were slightly lower than those of the control. Subsequent studies demonstrated that the presence of raffinose family oligosaccharides, a higher concentration of arginine, and a lower concentration of Na<sup>+</sup> relative to artificial seawater in PWW resulted in the reduction of cellular lipids and the proportion of DHA. Furthermore, the chemical oxygen demand (COD) of PWW was reduced by approximately 60% during the fermentation. Consequently, the utilization of PWW in A. limacinum culture for DHA production is a viable and cost-effective strategy.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-8"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pea whey wastewater as a medium additive for the production of docosahexaenoic acid (C22:6 n3).\",\"authors\":\"Xinyu Wang, Xiangying Zhao, Ruiguo Li, Jiaxiang Zhang, Xia Li, Liping Liu\",\"doi\":\"10.1080/10826068.2025.2453833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the potential of pea whey wastewater (PWW) as a substrate for the biosynthesis of docosahexaenoic acid (DHA) was investigated by culturing the strain Aurantiochytrium limacinum SFD-1502. The results showed that culturing SFD-1502 in PWW alone resulted in poor growth, possibly due to an insufficient carbon source. The addition of glucose and monosodium glutamate to PWW resulted in a significant improvement in cell growth, and the dry weight of the cells reaching 43.45 ± 0.39 g/L g/L, comparable to that of the control (using artificial seawater fermentation medium), despite the lipid content in the cells and the DHA proportion in the lipids were slightly lower than those of the control. Subsequent studies demonstrated that the presence of raffinose family oligosaccharides, a higher concentration of arginine, and a lower concentration of Na<sup>+</sup> relative to artificial seawater in PWW resulted in the reduction of cellular lipids and the proportion of DHA. Furthermore, the chemical oxygen demand (COD) of PWW was reduced by approximately 60% during the fermentation. Consequently, the utilization of PWW in A. limacinum culture for DHA production is a viable and cost-effective strategy.</p>\",\"PeriodicalId\":20401,\"journal\":{\"name\":\"Preparative Biochemistry & Biotechnology\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2025.2453833\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2025.2453833","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过培养菌株Aurantiochytrium limacinum SFD-1502,研究了豌豆乳清废水(PWW)作为生物合成二十二碳六烯酸(DHA)底物的潜力。结果表明,在PWW中单独培养SFD-1502会导致生长不良,可能是由于碳源不足。在PWW中添加葡萄糖和谷氨酸钠对细胞生长有显著的促进作用,细胞干重达到43.45±0.39 g/L g/L,与对照组(使用人工海水发酵培养基)相当,但细胞脂质含量和脂质中DHA的比例略低于对照组。随后的研究表明,与人工海水相比,PWW中存在棉子糖家族低聚糖,精氨酸浓度较高,Na+浓度较低,导致细胞脂质和DHA比例降低。此外,在发酵过程中,PWW的化学需氧量(COD)降低了约60%。因此,利用石灰藻培养的PWW生产DHA是一种可行且具有成本效益的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pea whey wastewater as a medium additive for the production of docosahexaenoic acid (C22:6 n3).

In this study, the potential of pea whey wastewater (PWW) as a substrate for the biosynthesis of docosahexaenoic acid (DHA) was investigated by culturing the strain Aurantiochytrium limacinum SFD-1502. The results showed that culturing SFD-1502 in PWW alone resulted in poor growth, possibly due to an insufficient carbon source. The addition of glucose and monosodium glutamate to PWW resulted in a significant improvement in cell growth, and the dry weight of the cells reaching 43.45 ± 0.39 g/L g/L, comparable to that of the control (using artificial seawater fermentation medium), despite the lipid content in the cells and the DHA proportion in the lipids were slightly lower than those of the control. Subsequent studies demonstrated that the presence of raffinose family oligosaccharides, a higher concentration of arginine, and a lower concentration of Na+ relative to artificial seawater in PWW resulted in the reduction of cellular lipids and the proportion of DHA. Furthermore, the chemical oxygen demand (COD) of PWW was reduced by approximately 60% during the fermentation. Consequently, the utilization of PWW in A. limacinum culture for DHA production is a viable and cost-effective strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
期刊最新文献
Ultrasonic/microwave-assisted extraction and properties of polysaccharides from Elaeagnus angustifolia. Bioconversion of mustard oil cake for production of lipase, optimization and direct immobilization from solid-state fermentation extract. The potential of Streptococcus pyogenes and Escherichia coli bacteriocins in synergistic control of Staphylococcus aureus. Review on up and downstream processing of L-asparaginase. Cellulase from Halomonas elongata for biofuel application: enzymatic characterization and inhibition tolerance investigation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1