{"title":"P2Y1R-IGFBP2信号:星形细胞-神经元通讯的新贡献者。","authors":"Dan Huang, Yong Tang","doi":"10.1007/s11302-025-10068-9","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y<sub>1</sub> receptors (P2Y<sub>1</sub>R), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2Y<sub>1</sub>R-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication. Thus, IGFBP2 could be an alternative target for treating the effects of upregulated P2Y<sub>1</sub>R activity in reactive astrocytes in neurological diseases.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P2Y<sub>1</sub>R-IGFBP2 signaling: new contributor to astrocyte-neuron communication.\",\"authors\":\"Dan Huang, Yong Tang\",\"doi\":\"10.1007/s11302-025-10068-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y<sub>1</sub> receptors (P2Y<sub>1</sub>R), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2Y<sub>1</sub>R-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication. Thus, IGFBP2 could be an alternative target for treating the effects of upregulated P2Y<sub>1</sub>R activity in reactive astrocytes in neurological diseases.</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-025-10068-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10068-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
Shigetomi et al. Nat comm 15(1): 6525,2024)最近发表在Nature Communications上的一篇文章中,Shigetomi等人发现星形细胞嘌呤能P2Y1受体(P2Y1R)的上调,通过下游分子胰岛素样生长因子结合蛋白2 (IGFBP2)起作用,在神经元的高兴奋性中起关键作用。在癫痫和中风模型中,P2Y1R-IGFBP2信号被发现介导星形胶质细胞驱动的神经元高兴奋性,因此是星形胶质细胞-神经元通讯的新参与者。因此,IGFBP2可能是治疗反应性星形细胞P2Y1R活性上调对神经系统疾病影响的替代靶点。
P2Y1R-IGFBP2 signaling: new contributor to astrocyte-neuron communication.
In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y1 receptors (P2Y1R), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2Y1R-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication. Thus, IGFBP2 could be an alternative target for treating the effects of upregulated P2Y1R activity in reactive astrocytes in neurological diseases.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.