苯并咪唑衍生物治疗乳腺癌分子靶点的研究综述

Q4 Biochemistry, Genetics and Molecular Biology Critical Reviews in Oncogenesis Pub Date : 2025-01-01 DOI:10.1615/CritRevOncog.2024056541
Pratima Katiyar, Kalpana, Aditi Srivastava, Chandra Mohan Singh
{"title":"苯并咪唑衍生物治疗乳腺癌分子靶点的研究综述","authors":"Pratima Katiyar, Kalpana, Aditi Srivastava, Chandra Mohan Singh","doi":"10.1615/CritRevOncog.2024056541","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides a basic summary of computational research on benzimidazole and its molecular targets in breast cancer (BC) drug discovery. The drug development process is streamlined, expenses are decreased, and the possibility of finding successful therapies for this difficult illness is increased with the use of computational tools. The utilization of benzimidazole derivatives in medication research and discovery is discussed, along with the results of benzimidazole derivative-related clinical trials conducted against blood cancer during the previous five years. Additionally, it includes analysis of changes in structure and how they affect pharmacology. The structure-based method and other computational tools used in drug development are also covered, as well as the importance of structural information such as stereochemistry, physiological action, and the use of spectroscopic methods like NMR and X-ray crystallography in understanding the interactions between bioactive compounds and receptors. The article highlights the potential of benzimidazoles as bioactive heterocyclic molecules with various biological activities, including antimicrobial and anti-cancer properties.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"43-58"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Benzimidazole Derivatives in Molecular Targets for Breast Cancer Treatment: A Comprehensive Review.\",\"authors\":\"Pratima Katiyar, Kalpana, Aditi Srivastava, Chandra Mohan Singh\",\"doi\":\"10.1615/CritRevOncog.2024056541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article provides a basic summary of computational research on benzimidazole and its molecular targets in breast cancer (BC) drug discovery. The drug development process is streamlined, expenses are decreased, and the possibility of finding successful therapies for this difficult illness is increased with the use of computational tools. The utilization of benzimidazole derivatives in medication research and discovery is discussed, along with the results of benzimidazole derivative-related clinical trials conducted against blood cancer during the previous five years. Additionally, it includes analysis of changes in structure and how they affect pharmacology. The structure-based method and other computational tools used in drug development are also covered, as well as the importance of structural information such as stereochemistry, physiological action, and the use of spectroscopic methods like NMR and X-ray crystallography in understanding the interactions between bioactive compounds and receptors. The article highlights the potential of benzimidazoles as bioactive heterocyclic molecules with various biological activities, including antimicrobial and anti-cancer properties.</p>\",\"PeriodicalId\":35617,\"journal\":{\"name\":\"Critical Reviews in Oncogenesis\",\"volume\":\"30 1\",\"pages\":\"43-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Oncogenesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevOncog.2024056541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Oncogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevOncog.2024056541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

本文对苯并咪唑及其分子靶点在乳腺癌药物发现中的计算研究进行了综述。药物开发过程简化,费用减少,并且通过使用计算工具,为这种困难的疾病找到成功治疗方法的可能性增加。讨论了苯并咪唑衍生物在药物研究和发现中的应用,以及近五年来苯并咪唑衍生物治疗血癌的相关临床试验的结果。此外,它还包括结构变化的分析以及它们如何影响药理学。在药物开发中使用的基于结构的方法和其他计算工具,以及结构信息的重要性,如立体化学,生理作用,以及在理解生物活性化合物和受体之间的相互作用时使用NMR和x射线晶体学等光谱方法。本文强调了苯并咪唑作为具有多种生物活性的杂环分子的潜力,包括抗菌和抗癌特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Benzimidazole Derivatives in Molecular Targets for Breast Cancer Treatment: A Comprehensive Review.

This article provides a basic summary of computational research on benzimidazole and its molecular targets in breast cancer (BC) drug discovery. The drug development process is streamlined, expenses are decreased, and the possibility of finding successful therapies for this difficult illness is increased with the use of computational tools. The utilization of benzimidazole derivatives in medication research and discovery is discussed, along with the results of benzimidazole derivative-related clinical trials conducted against blood cancer during the previous five years. Additionally, it includes analysis of changes in structure and how they affect pharmacology. The structure-based method and other computational tools used in drug development are also covered, as well as the importance of structural information such as stereochemistry, physiological action, and the use of spectroscopic methods like NMR and X-ray crystallography in understanding the interactions between bioactive compounds and receptors. The article highlights the potential of benzimidazoles as bioactive heterocyclic molecules with various biological activities, including antimicrobial and anti-cancer properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Oncogenesis
Critical Reviews in Oncogenesis Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
1.70
自引率
0.00%
发文量
17
期刊介绍: The journal is dedicated to extensive reviews, minireviews, and special theme issues on topics of current interest in basic and patient-oriented cancer research. The study of systems biology of cancer with its potential for molecular level diagnostics and treatment implies competence across the sciences and an increasing necessity for cancer researchers to understand both the technology and medicine. The journal allows readers to adapt a better understanding of various fields of molecular oncology. We welcome articles on basic biological mechanisms relevant to cancer such as DNA repair, cell cycle, apoptosis, angiogenesis, tumor immunology, etc.
期刊最新文献
Coralyne Targets the Catalytic Domain of MMP9: An In Silico and In Vitro Investigation. Identification of Glucose-6-Phosphate Dehydrogenase (G6PD) Inhibitors by Cheminformatics Approach. In Silico Analysis of Anti-Cancer Activity of Exopolysaccharide Isolated from Novel Pseudolagarobasidium acaciicola through Mass Production, Gel Permeation Separation, and Compositional Analysis. Interaction of Heat Shock Protein 90 (HSP90), Ganetespib, and 5-Fluorouracil by Computational Approach for Colorectal Cancer Therapy. Investigation of Benzimidazole Derivatives in Molecular Targets for Breast Cancer Treatment: A Comprehensive Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1