{"title":"神经母细胞瘤风险预测和分层的机器学习方法。","authors":"Ramakrishna Vadde, Manoj Kumar Gupta","doi":"10.1615/CritRevOncog.2024056447","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more personalized treatments and better patient outcomes. Various ML techniques, such as support vector machines, random forests, and deep learning, have shown superior performance in predicting survival, relapse, and treatment responses in neuroblastoma patients compared to conventional methods. However, challenges like limited data size, model interpretability, data variability, and difficulties in clinical integration hinder broader adoption. Additionally, ethical concerns related to bias and privacy must be addressed. Future work should focus on improving data quality, enhancing model transparency, and conducting thorough clinical validation. With these advancements, ML has the potential to revolutionize neuroblastoma care by refining early diagnosis, risk assessment, and therapeutic decision-making.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"15-30"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Approaches for Neuroblastoma Risk Prediction and Stratification.\",\"authors\":\"Ramakrishna Vadde, Manoj Kumar Gupta\",\"doi\":\"10.1615/CritRevOncog.2024056447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more personalized treatments and better patient outcomes. Various ML techniques, such as support vector machines, random forests, and deep learning, have shown superior performance in predicting survival, relapse, and treatment responses in neuroblastoma patients compared to conventional methods. However, challenges like limited data size, model interpretability, data variability, and difficulties in clinical integration hinder broader adoption. Additionally, ethical concerns related to bias and privacy must be addressed. Future work should focus on improving data quality, enhancing model transparency, and conducting thorough clinical validation. With these advancements, ML has the potential to revolutionize neuroblastoma care by refining early diagnosis, risk assessment, and therapeutic decision-making.</p>\",\"PeriodicalId\":35617,\"journal\":{\"name\":\"Critical Reviews in Oncogenesis\",\"volume\":\"30 1\",\"pages\":\"15-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Oncogenesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevOncog.2024056447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Oncogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevOncog.2024056447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Machine Learning Approaches for Neuroblastoma Risk Prediction and Stratification.
Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more personalized treatments and better patient outcomes. Various ML techniques, such as support vector machines, random forests, and deep learning, have shown superior performance in predicting survival, relapse, and treatment responses in neuroblastoma patients compared to conventional methods. However, challenges like limited data size, model interpretability, data variability, and difficulties in clinical integration hinder broader adoption. Additionally, ethical concerns related to bias and privacy must be addressed. Future work should focus on improving data quality, enhancing model transparency, and conducting thorough clinical validation. With these advancements, ML has the potential to revolutionize neuroblastoma care by refining early diagnosis, risk assessment, and therapeutic decision-making.
期刊介绍:
The journal is dedicated to extensive reviews, minireviews, and special theme issues on topics of current interest in basic and patient-oriented cancer research. The study of systems biology of cancer with its potential for molecular level diagnostics and treatment implies competence across the sciences and an increasing necessity for cancer researchers to understand both the technology and medicine. The journal allows readers to adapt a better understanding of various fields of molecular oncology. We welcome articles on basic biological mechanisms relevant to cancer such as DNA repair, cell cycle, apoptosis, angiogenesis, tumor immunology, etc.