分子对接:靶向肿瘤治疗的新兴工具。

Q4 Biochemistry, Genetics and Molecular Biology Critical Reviews in Oncogenesis Pub Date : 2025-01-01 DOI:10.1615/CritRevOncog.2024056533
Pavithra Uppathi, Suraj Rajakumari, Kallimakula Venkareddy Saritha
{"title":"分子对接:靶向肿瘤治疗的新兴工具。","authors":"Pavithra Uppathi, Suraj Rajakumari, Kallimakula Venkareddy Saritha","doi":"10.1615/CritRevOncog.2024056533","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular docking is a structure-based computational technique that plays a major role in drug discovery. Molecular docking enhances the efficacy of determining the metabolic interaction between two molecules, i.e., the small molecule (ligand) and the target molecule (protein), to find the best orientation of a ligand to its target molecule with minimal free energy in forming a stable complex. By stimulating drug-target interactions, docking helps identify small molecules that might inhibit cancer-promoting proteins, aiding in the development of novel targeted therapies. Molecular docking enables researchers to screen vast reorganization, identifying potential anti-cancer drugs with enhanced specificity and reduced toxicity. The growing importance of molecular docking underscores its potential to revolutionize cancer treatment by accelerating the identification of novel drugs and improving clinical outcomes. As a wide approach, this computational drug design technique can be considered more effective and timesaving than other cancer treatment methods. In this review, we showcase brief information on the role of molecular docking and its importance in cancer research for drug discovery and target identification. Therefore, in recent years, it can be concluded that molecular docking can be scrutinized as one of the novel strategies at the leading edge of cancer-targeting drug discovery.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"30 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Docking: An Emerging Tool for Target-Based Cancer Therapy.\",\"authors\":\"Pavithra Uppathi, Suraj Rajakumari, Kallimakula Venkareddy Saritha\",\"doi\":\"10.1615/CritRevOncog.2024056533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular docking is a structure-based computational technique that plays a major role in drug discovery. Molecular docking enhances the efficacy of determining the metabolic interaction between two molecules, i.e., the small molecule (ligand) and the target molecule (protein), to find the best orientation of a ligand to its target molecule with minimal free energy in forming a stable complex. By stimulating drug-target interactions, docking helps identify small molecules that might inhibit cancer-promoting proteins, aiding in the development of novel targeted therapies. Molecular docking enables researchers to screen vast reorganization, identifying potential anti-cancer drugs with enhanced specificity and reduced toxicity. The growing importance of molecular docking underscores its potential to revolutionize cancer treatment by accelerating the identification of novel drugs and improving clinical outcomes. As a wide approach, this computational drug design technique can be considered more effective and timesaving than other cancer treatment methods. In this review, we showcase brief information on the role of molecular docking and its importance in cancer research for drug discovery and target identification. Therefore, in recent years, it can be concluded that molecular docking can be scrutinized as one of the novel strategies at the leading edge of cancer-targeting drug discovery.</p>\",\"PeriodicalId\":35617,\"journal\":{\"name\":\"Critical Reviews in Oncogenesis\",\"volume\":\"30 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Oncogenesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevOncog.2024056533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Oncogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevOncog.2024056533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

分子对接是一种基于结构的计算技术,在药物发现中起着重要作用。分子对接提高了确定小分子(配体)和靶分子(蛋白质)两分子之间代谢相互作用的效率,以最小的自由能找到配体与靶分子的最佳取向,形成稳定的配合物。通过刺激药物靶标相互作用,对接有助于识别可能抑制促癌蛋白的小分子,有助于开发新的靶向治疗方法。分子对接使研究人员能够筛选大量重组,识别具有增强特异性和降低毒性的潜在抗癌药物。分子对接日益增长的重要性强调了它通过加速新药的鉴定和改善临床结果来彻底改变癌症治疗的潜力。作为一种广泛的方法,这种计算药物设计技术可以被认为比其他癌症治疗方法更有效和节省时间。在本文中,我们简要介绍了分子对接在癌症研究中的作用及其在药物发现和靶点鉴定中的重要性。因此,近年来,分子对接可以被视为癌症靶向药物发现的前沿新策略之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Docking: An Emerging Tool for Target-Based Cancer Therapy.

Molecular docking is a structure-based computational technique that plays a major role in drug discovery. Molecular docking enhances the efficacy of determining the metabolic interaction between two molecules, i.e., the small molecule (ligand) and the target molecule (protein), to find the best orientation of a ligand to its target molecule with minimal free energy in forming a stable complex. By stimulating drug-target interactions, docking helps identify small molecules that might inhibit cancer-promoting proteins, aiding in the development of novel targeted therapies. Molecular docking enables researchers to screen vast reorganization, identifying potential anti-cancer drugs with enhanced specificity and reduced toxicity. The growing importance of molecular docking underscores its potential to revolutionize cancer treatment by accelerating the identification of novel drugs and improving clinical outcomes. As a wide approach, this computational drug design technique can be considered more effective and timesaving than other cancer treatment methods. In this review, we showcase brief information on the role of molecular docking and its importance in cancer research for drug discovery and target identification. Therefore, in recent years, it can be concluded that molecular docking can be scrutinized as one of the novel strategies at the leading edge of cancer-targeting drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Oncogenesis
Critical Reviews in Oncogenesis Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
1.70
自引率
0.00%
发文量
17
期刊介绍: The journal is dedicated to extensive reviews, minireviews, and special theme issues on topics of current interest in basic and patient-oriented cancer research. The study of systems biology of cancer with its potential for molecular level diagnostics and treatment implies competence across the sciences and an increasing necessity for cancer researchers to understand both the technology and medicine. The journal allows readers to adapt a better understanding of various fields of molecular oncology. We welcome articles on basic biological mechanisms relevant to cancer such as DNA repair, cell cycle, apoptosis, angiogenesis, tumor immunology, etc.
期刊最新文献
Coralyne Targets the Catalytic Domain of MMP9: An In Silico and In Vitro Investigation. Identification of Glucose-6-Phosphate Dehydrogenase (G6PD) Inhibitors by Cheminformatics Approach. In Silico Analysis of Anti-Cancer Activity of Exopolysaccharide Isolated from Novel Pseudolagarobasidium acaciicola through Mass Production, Gel Permeation Separation, and Compositional Analysis. Interaction of Heat Shock Protein 90 (HSP90), Ganetespib, and 5-Fluorouracil by Computational Approach for Colorectal Cancer Therapy. Investigation of Benzimidazole Derivatives in Molecular Targets for Breast Cancer Treatment: A Comprehensive Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1